

Développement de méthode inverse pour la caractérisation hygrique des matériaux bio-sourcés du bâtiment.

Présenté par: Sana KHALED

Directeur de thèse : Florence COLLET- Maître de conférences - HDR, LGCGM-Université de Rennes1

Co-Encadrants : Marjorie BART- Maître de conférences, LGCGM-Université de Rennes1

Sylvie PRETOT - Maître de conférences, LGCGM-Université de Rennes1

Contexte et Objectif

Matériaux hygroscopiques

Transfert de masse et de chaleur

Long

Caractérisation des propriétés hygriques des milieux poreux

> Perméabilité à la vapeur

> > Isotherme de sorption

Valeur tampon hygrique (MBV)

Développer une méthode inverse

Démarche scientifique

Approche expérimentale

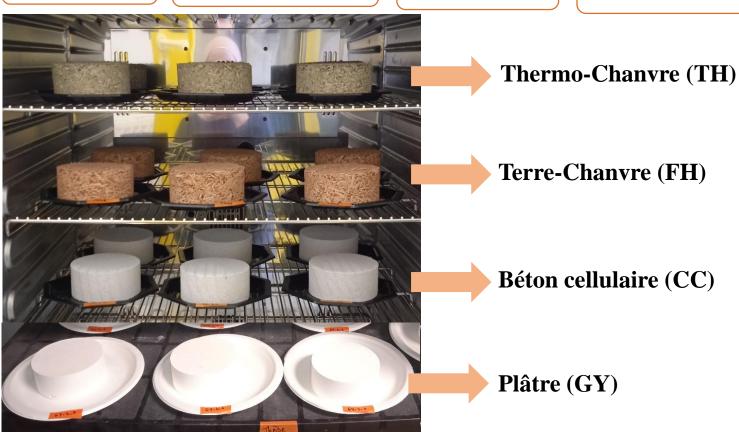
Simulation numérique

Fabrication et production des échantillons

GY-CC-TH-FH

Essai d'isotherme de sorption

(Type a: 6cm×8cm)

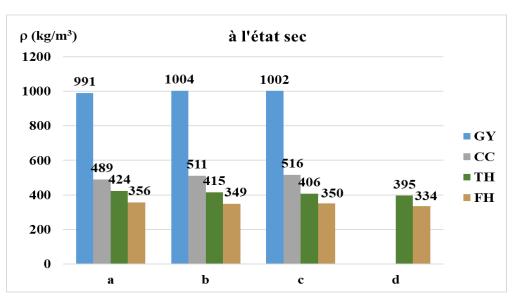

(Type d: $6cm \times 7cm$)

Essai de perméabilité à la vapeur

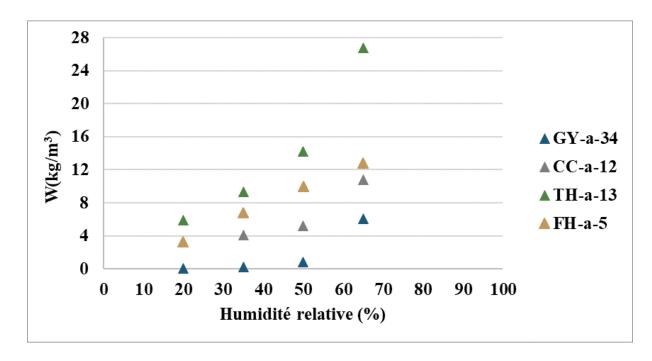
(Type b: $12cm \times 6cm$)

Essai MBV

(Type c: 12cm× $10 \text{cm}//12 \text{cm} \times 5 \text{cm}$ **TMC** code



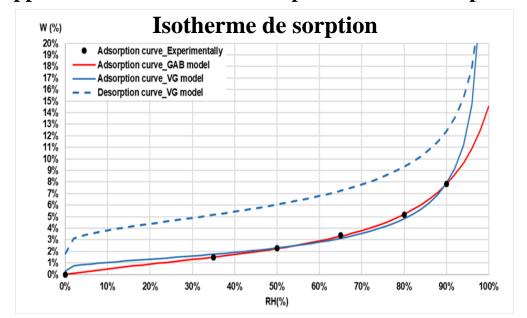
☐ Étude expérimentale

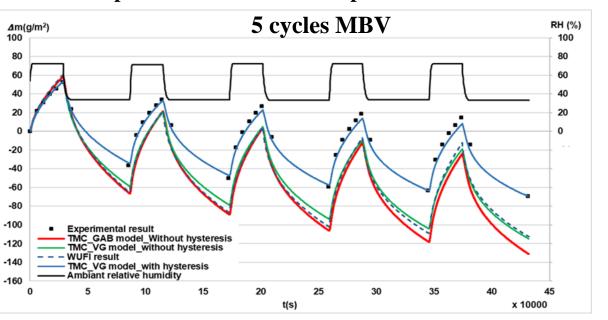

1. Masse volumique (kg/m³)

3. Capacité tampon hygrique (MBV test)

2. Isotherme de sorption (EN ISO 12571:2013)

Terre-Chanvre et Thermo-Chanvre : Excellent régulateur


Béton Cellulaire : Bon régulateur


Plâtre: Régulateur modéré

Protocole Nordtest(Rode et al., 2005)

☐ Étude numérique

1. Application de méthode inverse pour déterminer la perméabilité à la vapeur et la courbe de désorption du matériau Terre-Chanvre

Cycles		1		2		3		4		5	
		Ads	Des								
WUFI	a (%)	13.75	39.72	20.59	26.91	16.06	21.72	19.53	22.03	21.29	16.68
	b (g/m²)	7.29	28.06	13.65	36.25	23.88	42.57	27.33	45.40	28.79	42.81
TMC_GAB	a (%)	9.74	38.60	21.22	28.53	17.46	25.37	18.04	26.80	18.09	24.92
	b (g/m²)	5.16	29.19	14.34	38.30	24.86	46.68	32.60	54.58	40.47	61.40
TMC_VG	a (%)	0.31	24.57	9.41	15.40	5.94	12.54	6.45	13.69	6.59	11.68
	b (g/m²)	0.17	21.70	15.12	28.05	23.48	34.26	29.23	40.46	35.32	45.14
TMC_VG_	a (%)	0.31	2.68	6.73	6.34	10.79	8.09	10.25	7.50	10.04	9.24
hysteresis	b (g/m²)	0.17	2.55	2.17	3.16	5.15	1.81	6.19	0.04	7.87	0.11

2. Sensibilité des paramètres : Perméabilité à la vapeur - Modèle de GAB - Modèle de Van-Genuchten

Merci de votre attention

