

AGENCE DE LA TRANSITION ÉCOLOGIQUE

RHEOMETRICAL OPTIMIZATION OF VINE SHOOTS BIO-BASED CONCRETES

L. B. R. Araujo, R. Chehade, S. Hans, A. Fabbri, N.Sebaibi

CONTEXT

Project Sarmentys II, funded by ADEME (AAP perfecto 2022) with Neuveu, Builders and ENTPE.

- Focus on using vine shoots in bio-based concretes as an alternative aggregate
- No existing protocol for vine shoot-base concrete formulation

OBJECTIVE

Optimize the vine shoots concrete water dosage

using rheometry tools

APPROACH

Materials: grinded vine shoots, lime based binder (Tradical thermo) and water

- Formulations with pastes without extra water and saturated aggregates showed higher mixing torques, with a difficult initial mixing;
- All formulations presented similar stabilization torque values, with smoother curves and lower stabilization torque values as the W_{eff}/B values increased;
- Formulations with saturated aggregates without additional water had higher overall mixing energy values.

— 0.60-D ◆ 0.55-D **0.50-D 0.45-D** (N.m)Torque Material behaves like a fluid for high W/B 200 100 300 400 Impeller speed (RPM)

Flow test: Torque x Rotation speed

its high absorption. Paste extra water was added based on 15 min. VNS (D) absorption ($\approx 84.5\% = 240.0 \text{ kg/m}^3$). Resulting in a W_{VNS}/B increase of 0.63

Fixed parameters: VNS = 284 kg/m^3 ; Binder = 378 kg/m^3 ; *VNS/B* = 0.75

RHEOMETRIC TEST PARAMETERS

- Build-up of the mixes occurs on the rheometer walls when impeller speed increases, leading to a torque decrease generated by occurrence of dead zones.
- Formulations with a W_{eff}/B of 0.6 showed behavior closer to a fluid; Common rheological models can not be used to define the observed behaviors

LEMENTARY RESULTS

- Increasing the W_{eff}/B ratio decreased the compressive strength values;
- The aggregates saturation increased the compressive strength values; Higher W_{eff}/B resulted in foam formation and increase in strength.

Apparent density

- Increasing the W_{eff}/B ratio increased the apparent density values;
- The aggregates saturation increased the apparent density values;

Higher W_{eff}/B resulted in foam formation and <u>decrease</u> in dry density.

CONCLUSIONS

- The vine shoots aggregates' absorption affects the rheological performance of vine shoots concretes;
- The concretes with higher global water contents require less mixing energy and exhibit a more fluid-like behavior; The apparent densities are directly influenced by the
- global water content used;
- The saturation of the vine shoots aggregates leads to 2.5 times increase in the vine shoots concrete's compressive strength.

