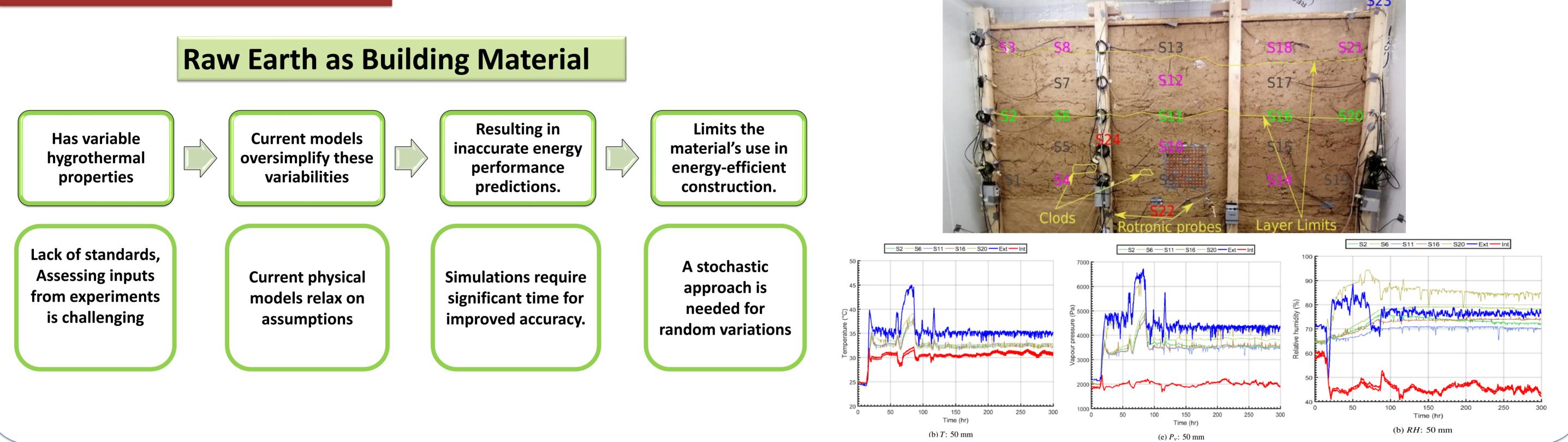
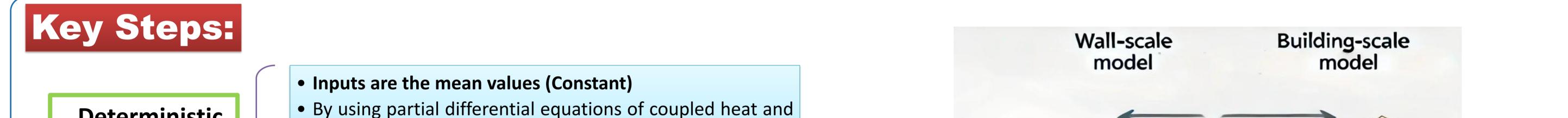
Effects of the Variability in the Hygrothermal Properties of Raw Earth on the Energy Behavior of Buildings: STD Coupling and Stochastic Approach Ali Ahmad Waziri, Stéphanie Bonnet, Nabil Issaadi, Romain Clerc, Philippe POULLAIN

GeM - Research Institute in Civil and Mechanical Engineering - UMR 6183 Nantes Université - École Centrale de Nantes - CNRS

Context:


- Raw earth is gaining attention for sustainable construction due to its thermal mass and moisture-regulating properties. However, Its natural variability in hygrothermal properties poses challenges for accurate energy performance predictions.
- This research uses an STD (Simultaneous Transfer of Heat and Moisture) approach and stochastic modeling to analyze → How variations in raw earth hygrothermal properties affect building energy behavior.


Objectives:

- Create coupled heat and moisture models for better predictions across conditions.
- Use a stochastic approach in TRNSYS to model variability at material, wall, and building scales.
- Provide guidelines for eco-friendly, energy-efficient building design using bio-based materials.

Problem Statement:

Spatial variability of hygrothermal properties of a cob wall. TCHIOTSOP(2019-2022)

Deterministic Approach	 By using partial differential equations of coupled heat and mass transfer model. Each point of the wall will have same parameter, (Wall is homogenous) 	
Probabilistic Approach	 Variabilities and uncertainties in the model input parameters and macroscopic properties. because of the spatial and random variabilities. (Wall is not homogenous) 	Co-Simulation
Co-Simulation	 Co- simulation of hygrothermal models at wall scale with FEM (COMSOL), and at building scale with STD (TRNSYs) to simulate energy consumption of building and occupants comfort. 	

Expected Outcomes : Image: State of the stat

This research underscores the importance of accurately modeling the variability in raw earth's hygrothermal properties to improve energy efficiency predictions in sustainable buildings.

- By using a coupled heat and moisture transfer approach with stochastic modeling, we can better address natural material variability, leading to more reliable simulations.
- The findings will help develop guidelines for bio-based materials in eco-friendly

5- Support Development of Standards for Sustainable Use of Earthen Materials

construction, advancing sustainable building standards.

Refrences:

[1] Segning Tchiotsop, C. J. (2022). Experimental and numerical studies of the variability of hygrothermal properties effects on the coupled heat and moisture transfer through a cob wall: Material and wall scales (Doctoral dissertation, Nantes Université). INGVER – GeM, UMR CNRS 6183.

[2] Qin, M. (2006). Étude des phénomènes de transfert hygrothermiques dans les parois des bâtiments. Revue Européenne de Génie Civil, 10(6-7), 849-864.

[3] Kiema, B., Coulibaly, O., Chesneau, X.. (2024) Numerical Modelling of Coupled Heat and Mass Transfer in Porous Materials: Application to Cinder Block Bricks. Open Journal of Applied Sciences, 14, 2360-2373.

Contact:

WAZIRI Ali Ahmad

ali-ahmad.waziri@etu.univ-nantes.fr

GeM - INSTITUT DE RECHERCHE EN GÉNIE CIVIL ET MÉCANIQUE - UMR CNRS 6183 1 rue de la Noë, 44321 Nantes, France - gem.ec-nantes.fr