

CETELOR

Les matériaux biosourcés sur la voie de la bioéconomie : **Valorisation des écorces** d'eucalyptus, retour d'expérience "Du laboratoire à l'industrie"

> *César SEGOVIA* Research manager Co-director CETELOR – Université de Lorraine

Valorisation des écorces d'eucalyptus, retour d'expérience "Du laboratoire à l'industrie"

Universidad de Concepción

Technological Development Unity University of Concepción - Chile

Research lines

Ciencia, Tecnología e Innovación en Bioeconomía

Bioeconomy

Lignocellulosic materials

Packaging

Plastic

Elastomeric materials

Pyrolisis

Bioenergy

Thermal storage materials

carbonaceous materials

WORK TEAM

Professionals

Technicians

24

Total employees

12 specialized laboratories for testing and analysis of different materials

LABORATORIO DE BIOENERGÍA

LABORATORIO DE PROCESOS TERMOQUÍMICOS

LABORATORIO DE SERVICIOS ANALÍTICOS

LABORATORIO DE CROMATOGRAFÍA LÍQUIDA

LABORATORIO DE CROMATOGRAFÍA GASEOSA

LABORATORIO DE MATERIALES HÍBRIDOS Y DE CARBONO

LABORATORIO DE BIOMATERIALES

LABORATORIO DE MATERIALES TERMOPLÁSTICOS

LABORATORIO DE MATERIALES ELASTOMÉRICOS

LABORATORIO DE BIOPRODUCTOS

LABORATORIO DE PRODUCTOS FORESTALES

LABORATORIO DE BIODEGRADABILIDAD

4 processes rooms, where its pilot plants are located, which allow scaling up processes from a laboratory scale to a demonstration production level and from there, to an industrial level.

PROCESOS QUÍMICOS

- Plantas piloto de extracción sólido-líquido
- Plantas piloto de evaporación
- Plantas piloto de secado
- Columna de destilación continua
- Prensa de extrusión
- Equipo de filtración por membranas
- Homogenizador
- Reactores
- Planta piloto extracción líquido-líquido
- Planta piloto para la impregnación de madera

PROCESOS TERMOQUÍMICOS

- Pirolizadores flash
- Planta piloto de torrefacción
- Planta piloto de combustión de carbón
- Planta de gasificación laboratorio
- Planta de pirólisis de plástico
- Planta productiva semi-móvil de peletización
- Planta piloto para tratamiento térmico de madera
- Planta piloto de pirólisis intermedia de biomasa
- Planta piloto Fotorreactores Solares para tratamiento de aguas

CONVERSIÓN DE BIOMATERIALES

- Planta piloto para la producción de tableros reconstituidos de madera
- Planta piloto para la producción de fibras MDF o TMP
- Plantas piloto para la producción de materiales plásticos compuestos
- Planta piloto para la extrusión de plásticos
- Planta piloto para la inyección de plásticos
- Plantas piloto para la producción de películas termoplásticas
- Planta piloto de producción de Microfibrilas de Celulosa

PREPARACIÓN DE MATERIAS PRIMAS

- Molinos
- Tolvas de alimentación con piso oleohidráulico
- Cintas transportadoras
- Refinador
- Triturador
- Criba rotatoria
- Harnero

R&D Technical Center

Technical means of industrial type at disposal

Production of bio-sourced materials based on vegetable and technical fibers:

- Non-woven insulation for the building industry
- Reinforcement of composite
- Non-woven geotextile type

UNIVERSITÉ De lorraine

Treatment and / or complexing of materials

Development on the recycling and revalorization of materials

Characterization of the plant fiber

Morphological, chemical, mechanical

Characterization of materials:

- Chemical and Mechanical
- Thermal conductivity
- Resistance to mould growth in materials (bio-composite, building insulation, textile)
- Resistance to degradation and accelerated aging

Development of technical means for specific research needs or for companies

Non-woven insulation for the building industry

- Thermal conductivity
- Resistance to mould growth in materials (bio-composite, building insulation, textile)
- Resistance to degradation and accelerated aging

UNIVERSITÉ DE LORRAINE

R&D Technical Center

Technical Hall – Microspinning line

R&D Technical Center Technical Hall – Stem Explosion

STEAM EXPLOSION

pilot machine

UNIVERSITÉ DE LORRAINE

steam generator

ABOSCO SP

Project Engineering Unit

UNIVERSITÉ DE LORRAINE

Нор

Setting up and monitoring of research projects

Another fibers : Jute, kenaf, Palm, Rodofolia etc

17

Valorisation des écorces d'eucalyptus, retour d'expérience "Du laboratoire à l'industrie"

PRODUCTION CELULOSA

According to the FAO, **193 million m3** of paper pulp are produced worldwide every year, mainly to make cardboard and paper.

DEBARKING (DECORTICATION)

24 millions m³ par year in Chile Then 80% eucalyptus

6000 m³/months

- 20 million hectares of *Eucalyptus sp.* worldwide
- 0,85 million hectares of Eucalyptus sp. in Chile
- Chile, 2023, roundwood consumption: 14 MM m³
- Huge quantity of bark is generated yearly
- In Chile, more than 1 MM/ton year
- Bark is used as a fuel
- Low calorific value and complex material

E. bark is a real waste management problem

- Particular morphology can be used as an advantage
- New source of natural fiber
- Adding value (current selling price is 50 USD/ton)
- Increased biobased products
- Decreased petroleum dependency
- Decreased pollution

Eucalyptus bark fibers

Bioproducts
developmentLimitations• Raw materials availability
• Technological development

Oportunity High availability of Eucalyptus bark

- Technologies to produce fiber from wood are known
- Refining process requires high investment and advanced expertise, also high energy consumption
- The refiner machine **is not suitable** for bark (high heterogeneity and morphology)

Eucalyptus bark fibers

Eucalyptus bark (high heterogenety)

Cleaning

Screening

Mill type selection

Opening/carding machine

Mechanical process: Bark to fiber

Moisture content: 12- 27% o.d.b

Quality of the E. bark

Yield: 50% - 70%

Technical *Eucalyptus* fiber

Morphological properties

		1 8 1	1				
	Length (mm)		Diameter (mm)				
	20-80 mm		50-500 μm				
	Mechanical properties						
Air (µm2)	Maximum strength	Tensile stress	Elasticity	Elongation at			
	(N)	(MPa)	modulus (GPa)	Break (%)			
7911	$1,65 \pm 0,75$	224 ± 109	$2,29 \pm 1,52$	1,25			
Chemical components (%, dry solid basis)							
Cellulose	Hémicelluloses	Klason lignine	Ethanol/water	Ash			
Condiose	Heineenalobes	Triaboli ligilillo	extractives	1 1011			
$49,91 \pm 2,56$	$18,12 \pm 4,16$	$17,60 \pm 0,49$	$7,\!43 \pm 0,\!03$	$7,62 \pm 0,32$			

- High length variability
- Diameters in the range of hemp and flax
- Compose of several elementary fibers
- Low mechanical resistance compared to flax and hemp
- In airlay technology the strength requirement over the fiber is low
- Higher content of cellulose/hemicellulose and lower lignin than other tree barks

Laboratory prototype

Binder selection and dosification

Resins/synthetic fibers

Consolidation process

Pressing process Air convection oven

Characteristic parameters

Density Thickness selection

Bark-synthetic fiber

Mixture system Bark-synthetic fiber

Conformación colchón

Método 1: Consolidación por inyección a vapor

Método 2: Consolidación en horno

Thermal conductivity

50 kg/m³ 50 mm 0,04 W/mK

Pilot plant demostrative process

CETELOR

Collaborative network

Airlaid technology

Demostrative test

Density, yield, synthetic fiber (kind, dosification and lengh).

Characterization

Characterization

-	
EN NF 126	67

Thermal insulation material	Density (kg/.n ³)	Thermal conductivity (λ) (W/mK)	Reference
Panel 1	81.1 ± 6.5	0.0391 ± 0.00052	
Panel 2	97.8 - 3.3	0.0379 ± 0.00024	
Kenaf	30-180	0.034-0.043	Asdrubali, 2015
Jute	26.1	0.0458	
Flax	32.1	0.0429	Korionia 2011
Hemp	79.6	0.0475	Korjenic, 2011
Hemp	40.2	0.0393	
Rock wool	40-200	0.0330-0.0040	Andruhali 2015
Expanded polystyrene (EPS)	15-35	0.0310-0.0380	Asuruball, 2015
Polyurethane	24	0.0240	Ardente, 2006

NCh2447/Of2001

Contact with technological supplier

Demostrative test

Yield, density, synthetic fiber (kind, dosification and lengh).

Characterization

Demostrative industrial scaling process

Demonstrative industrial scaling process

Demonstrative industrial scaling process

The feasibility of production of the insulating panel on an industrial scale is demonstrated.

TRL8 Validated technology

Characterisation

• Fire behaviour

- Thermal Conductivity
- Permeability
- Fungi resistance

RESISTENCIA TÉRMICA (RT) DE MURO MÍNIMA DE CADA ZONA

Minimum thermal resistance R100 of the thermal insulating material in roof complexes, perimeter walls and ventilated floor.

ZONA TÉRMICA	COMPLEJO DE TECHUMBRE	COMPLEJO DE MUROS PERIMETRALES	COMPLEJO DE PISO VENTILADO R100(*) [(m²K)/W]x100	
	R100(*)	R100(*)		
	[(m ² K)/W]x100	[(m ² K)/W]x100		
A	119	48	28	
В	213	125	143	
С	213	125	115	
D	263	125	167	
E	303	167	167	
F	357	222	200	
G	357	250	256	
Н	400	333	313	
I	400	286	313	

(*) Según la norma NCh 2251: R100 = valor equivalente a la Resistencia Térmica (m²K/W) x 100.

de Innovación en Madera

Centro UC de Innovación en Madera Informe N° 202317 ORIGINAL

CASO BASE				CASO PROYECTADO					
Descripción de la sección de análisis de la solución constructiva: Sección puente tármico (pie derecho)					Descripción de la sección de análisis de la solución constructiva:				
					Sección puente térmico (pie den	echo con b	ameras		
Muro madera estructura 2x4" y- aisiacor 150 (mm)	distanciado	res 2x3", con	aislante fit	ras naturales	Muro madera estructura 2x4" y aislacor 150 (mm)	distanciado	res 2x3", com	aislante fib	ras naturales
Calcular HR Cond. Limplar	Puntos de anilisis HB.Cond.		Calinciar H3 Const. Live pilor	,	Puritos de anié isis		HR Cond.		
HR interior, git	65%	75%	80%	42%	HR interior, gi: 65		75%	80%	86%
Condensación superficial:	No	No	No	No	Condensación superficial:	No	No	No	No
Res. Térmica caso base	1.784	1.784	1.784	1.784	Res. Térmica caso proyectado	1.786	1.786	1.786	1.786
Res. Térmica total min, R _{t.min}	0.375	0.557	0.715	0.191	Res. Térmica total min, R _{t.min}	0.375	0.557	0.715	1.053
Condensación intersticial:	Sí	Si	si	Si	Condensación intersticial:	No	No	No	Si
Detalle de interlases con condensaci	erc		-		Detalle de interfases con condensació	rc	1		
supernice exterior		~		~	Supernice exterior				
Interface 2		Å		-	Interface 2				×
Superficie Interior		-			Interface 2				-
supernicie interior		-	-		Interface 5			-	
					Superficie interior				
		-							
Nº Interfaces condensación:	1	1	1	1	N ⁺ Interfaces condensación:	0	0	0	1
Tetal- 3 interfasas			Total		f) Interfaces				

Para eliminar el riesgo de condensación superficial y reducir el riesgo de condensación intersticial, en los escenarios de porcentaje de humedad relativa interior antes mencionados, para la sección del material aislante se especifican las siguientes barreras:

Barrera de vapor:

 Instalada entre el entramado de madera (pies derechos) y la placa de revestimiento interior (yeso-cartón)

- Polietileno:
 - Marca: Genérico
 - Espesor: 0,00025 [mm]

Factor de resistencia al vapor de agua (µ): 151.800

 Se analizó como alternativa la barrera tipo VolcanWrap, obteniendo los mismos resultados.

Barrera de humedad:

Instalada sobre la cara exterior de la placa OSB

- Traspir 95
 - Marca: Rothoblaas
 - Espesor: 0,0004 [mm]
 - Factor de resistencia al vapor de agua (µ): 50
- Se analizaron como alternativas las barreras tipo Typar y Tyvek HouseWrap, obteniendo resultados similares.

Fire behavior test

Sample 1, Side non exposed to fire

Sample 2, Side non exposed to fire

Sample 1, Side non exposed to fire. Test finished

Sample 2, Side non exposed to fire. Test finished

Constructive solution F15 according with MINVU

Sample	Section	Thickness	Total mass	Side exposed to	Side non-	Insulation panel	Structure
	(mm x mm)	(mm)	(Kg)	fire	exposed to fire		
1	700 x 700	90	13,5	GYPSUM PLASTERBOARD, 10 mm	OSB 9,5 mm	Natural fibers Thickness, 50 mm, Density= 50 kg/m3	Wood=Pinus radiata, 45 x 70 (mm) and moisture 15%.
2	700 x 700	90	14,0	GYPSUM PLASTERBOAR D, 10 mm	OSB 9,5 mm	Glass wool, Thickness, 50 mm, Density= 50 kg/m3	Wood=Pinus radiata, 45 x 70 (mm) and moisture 15%.

Criteri	os de resistencia al fuego	NCh935/1 Of.97	Tiempo de falla Probeta N°1	Tiempo de falla Probeta N°2
i) Capa	cidad de soporte de carga	9.2.1	No evaluado	Ne evaluado
	Temperatura media cara no expuesta (153°C máx.)	ítem 9.2.2.1 a)	85 [min] ²	55 [min] ³
ii) Aislamiento	Temperatura máxima cara no expuesta (193°C máx.)	ítem 9.2.2.1 b)	89 [min] ⁴	54 [min]⁵
iii) Estanguidad	Grietas y fisuras	ítem 9.2.3.1	10	iv.O.
iii) Estanquidad	Falta de estanquidad	ítem 9.2.3.2	N.O.	N.O.
iv) Emi	sión de gases inflamables	ítem 9.2.4	N.O.	51 [min]

N.O.: No observado hasta el término del ensayo.

Journal of Cleaner Production 249 (2020) 119356

Contents lists available at ScienceDirect Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers

Yannay Casas-Ledón ^{a,*}, Karen Daza Salgado ^a, Juan Cea ^b, Luis E. Arteaga-Pérez ^c, Cecilia Fuentealba b,

* Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Chile b Technological Development Unit (UDT), University of Concepción, Chile ^c Laboratory of Thermal and Catalytic Processes (UPTC), Department of Wood Engineering, University of Bio-Bio, Chile

ARTICLEINFO	A B S T R A C T
Article history: Received in revised form Received in revised form 15 November 2019 Accepted 16 November 2019 Available online 19 November 2019	This paper reports on the environmental issues associated with the manufacturing of a new insulation material (panel) produced with fibers from Eucalyptus bark. The analyses consider four types of euca- lyptus bark panels with different bulk densities (25, 50, 75 and 100 kg/m ³). For each type of panel, the environmental impact assessment is performed using Life Cycle Assessment (LCA) methodology and considering system boundaries from cradle to gate. Major environmental impacts were associated to the papel with a densitie of 100 kg/m ² due to the binker mass required for the same functional unit ($R = 1$
Handling editor: Mingzhou Jin	$m^2 K/W$). The panel manufacturing, forest management and biomass transport were the stages with the highest significance, mainly due to: the contribution of the synthetic fiber used for binding the bark-
Keywords: Insulation materials Eucalyptus bark fibers Life cycle assessment	derived fibers, intensive use of agrochemicals in forest management and long traveled distances for biomass transportation. Furthermore, the eucalyptus bark panels with densities of 25 and 50 kg/m ³ shown the lower embodied energy and carbon emissions than traditional insulation materials (expanded polyurethane, polystyrene, glass fibers and glass wool). Therefore, it could be an attractive insulation material for a more sustainable building sector.
	© 2019 Elsevier Ltd. All rights reserved.

MDPI

Article

Efficient Bio-Based Insulation Panels Produced from Eucalyptus Bark Waste

Cecilia Fuentealba ^{1,2,*}, César Segovia ³, Mauricio Pradena-Miquel ⁴ and Andrés G. César ⁵

- ¹ Unidad de Desarrollo Tecnológico, Universidad de Concepción, Concepción 4070374, Chile
- ² Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackena, 4860, Santiago 7820436, Chile
- ³ Centre d'Essais Textile Lorrain, CETELOR-Université de Lorraine, 27 rue Philippe Seguin, 88051 Epinal, France; cesar.segovia@univ-lorraine.fr
- ⁴ Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; mauricio.pradena@uss.cl
- 5 Escola Politécnica, Departamento de Engenharia de Transportes, Universidade de São Paulo, Cidade Universitária, São Paulo 05508-010, Brazil; andresgcesar@usp.br
- * Correspondence: c.fuentealba@udt.cl

Abstract: Traditional thermal insulation panels consume large amounts of energy during production and emits pollutants into the environment. To mitigate this impact, the development of bio-based materials is an attractive alternative. In this context, the characteristics of the Eucalyptus fiber bark (EGFB) make it a candidate for insulation applications. However, more knowledge about the manufacturing process and in-service performance is needed. The present study characterized the properties that determine the in-service behavior of the EGFB insulation panel. The assessment involved two different manufacturing processes. The results indicated that the hot plates and the saturated steam injection manufacturing system can produce panels with similar target and bulk density. The thermal conductivity fluctuated between 0.064 and 0.077 W/m·K, which indicated good insulation, and the values obtained for thermal diffusivity (0.10-0.37 m mm²/s) and water vapor permeability (0.032-0.055 m kg/GN s) are comparable with other commercially available panels. To guarantee a good in-service performance, the panels need to be treated with flame retardant and antifungal additive. The good performance of the panel is relevant because bio-based Eucalyptus bark panels generate less CO2 eq and require less energy consumption compared to traditional alternatives, contributing to the sustainability of the forestry and the construction industry.

Citation: Fuentealba, C.; Segovia, C.; Pradena-Miguel, M.; César, A.G. Efficient Bio-Based Insulation Panels Produced from Eucalyptus Bark

Keywords: bio-based material; eucalyptus bark; thermal insulation; forestry waste; natural fibers

AISLACOR

Thermal insulation panel

Aislacor es un **panel aislante térmico y** acústico compuesto por fibras naturales de corteza de eucalipto.

PRODUCTO

OLUÉNES SOMOS

Está compuesto por 90% de fibras naturales y 10% de aglomerante.

NOTICIAS

CONTACTO

INFORMES DE VALIDACIÓN

www.aislacor.cl

- Full characterization in accordance with Chilean regulations (MINVU).
- Natural alternative as replace of glass wool and EPS
- Licenced to Aislacor SpA en 2023
- Productive plant in 2025, 1-2MM m²/año

Unidad de Propiedad Norma Valor Validación medida Densidad NCh850.0f.2008 50 DICTUC-Nº1607325 kg/m3 mm DICTUC-Nº1607325 VCh850.0f.2008 Espesor 50 Conductividad W/m.K DICTUC-Nº1607325 NCh850.0f.2008 0.036 térmica **)** J/kg.K Calor específico EN 12667 2253 Laboratorio ASA Resistencia m2.K/W NCh 2251 DICTUC-Nº1607325 1,389 térmica, R100 Permeancia al ISO 11654:1991 1,14x10-9 DICTUC-Nº1607325 Kg/m2 s Pa vapor de agua. W Resistencia a difusión m2 s Pa/Kq NCh850.0f.2008 874×10-8 DICTUC-Nº1607325 vapor agua, Zp Permeabilidad de Kg/m s Pa NCh2457-2014 5.91x10-11 DICTUC-Nº1607325 vapor de agua Factor resistencia NCh2457-2014 3.7 DICTUC-Nº1607325 al vapor de agua Aislación acústica ISO 11654-1997 Aw=0.7:NCR=0.75 CPIA Nº 331 (Cpia) US-EPA, CFF Material Inflamable part 261 No UDT-2022 RT-007 Resistencia a mohos AWPA E24-16 100% UDT-2022 RT-007

Thermal insulation panel

UNIVERSITÉ DE LORRAINE

CONCLUSION

