

Universié de Lorraine-Université de Monastir

Thèse en Génie Textile finanvée par: Projet PHC Utique

7 au 10 novembre 2022 à Lorient

Elaboration et caractérisations d'isolants thermiques et acoustiques à base de fibres biosourcés

Doctorante: Mme. Melek AYADI

melek.ayadi@univ-lorraine.fr

Melek AYADI^{1,2,3}, César SEGOVIA², Nicolas DAUCHEZ⁴, Riadh ZOUARI³, Ayda BAFFOUN⁵, SLAH MSAHLI³, Nicolas BROSSE¹

¹Université de Lorraine, LERMAB, 54000 Nancy, France. ²Université de Lorraine, Cetelor, 88000 Epinal, France. ³Textile ³Engineering Laboratory, Monastir, 5070, Tunisia. ⁴ Université de Technologie de Compiègne, 60200 Compiègne, France.

⁵Textile Materials and Process Research Unit, 5035, Monastir, Tunisia.

> Elaboration des panneaux par voie aérodynamique

- Valorisation des fibres de *Posidonia Océanica* pour concevoir des panneaux d'isolation thermiques et acoustiques
- Matériaux élaborés par procédé de non tissés, issu de l'industrie textile et adaptés aux fibres textiles.

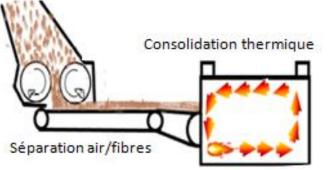
Une mise en forme en panneaux faciles à poser,

Un pouvoir d'isolation thermique et d'absorption acoustique,

Une capacité de limiter la propagation du feu dans le bâtiment en cas d'incendie,

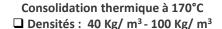
Un pouvoir inhibant la prolifération des moisissures dans les bâtiments

Un pouvoir hydrofuge (résistant à l'eau)

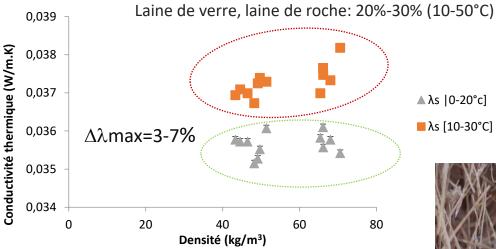


Mélange Posidonie/10% fibres thermoliantes PET

Formation de la nappe Machine Airlaid


Alimentation de la machine

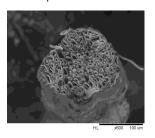
Pelottes de Posidonia Océanica L.


Découpe en des panneaux de 300 × 300 mm²

Conductivité thermique (NF EN 12667-1)

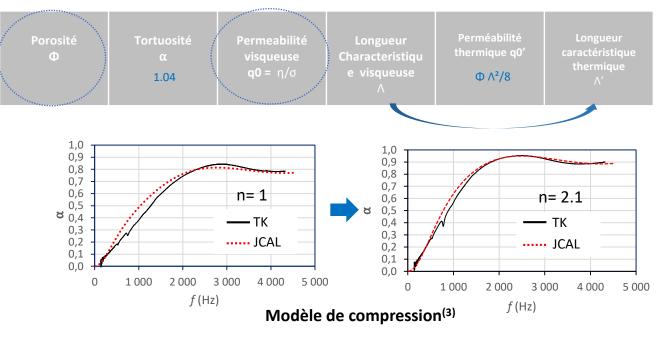
Panneaux en Posidonie/10% PET

Objectif : Conductivité thermique < 40 mW/m.K

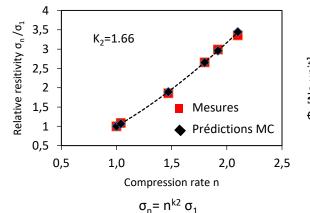

Conditionnement: 70°C, ~0% HR

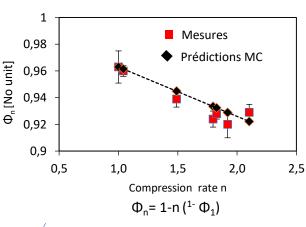
Tab1. Conductivités thermiques des matériaux conventionnels

Matériau	Densité (kg/m³)	Conductivité thermique (W/m.K)		
Posidonia Océanica	43-103	0.03515-0.0361		
Hemp	40-80	0.0385-0.0426		
Fiberglass ⁽²⁾	24-120	0.034-0.047		
Extruded polystyren (2)	24-42	0.026-0.035		
Rockwool (2)	40-200	0.037		
Flax ⁽¹⁾	20-80	0.03-0.045		
Jute ⁽¹⁾	30-80	0.038-0.055		


 $\Phi_{\rm p} = 96.3\%$

 Φ_f (MIP)= 76.6% D_f = 0.5387 μm


Coefficient d'absorption acoustique


Modèle JCAL à 6 paramètres Johnson-Champoux-Allard-Lafarge (1997)]

3 matériaux

18

2 mesures

⁽¹⁾ M.S. Al-Homoud / Building and Environment 40 (2005) 353-366

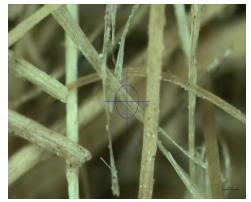
⁽²⁾ B.M. Suleiman, J. Larfeldt, B. Leckner, M. Gustavsson, Thermal conductivity and diffusivity of wood, Wood Science and Technology 33, 1999, 465–473.

⁽³⁾ L. .Lei et al. Generalized power law for predicting the air flow resistivity of thermocompressed fibrous materials and open cell foams. Applied acoustics. 2019.59-65.

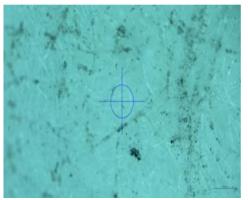
> Résistance des panneaux aux moisissures : Cahier 3717 du CSTB (Mars 2018)

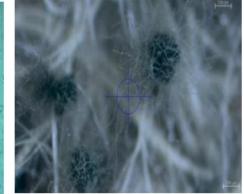
•Aspergillus niger

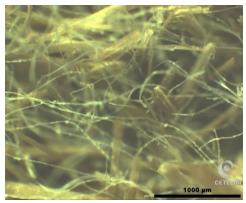
Penicillium funiculosum


•Trichoderma viride

•Chaetomium globosum


Paecilomyces variotii


28°C ± 2 °C RH 95% ± 4% 4 semaines Résistants aux moisissures selon la norme NF EN 15101-1: Classe 0: Aucune moisissure visible à la surface de l'éprouvette examinée à lumière réfléchie avec un grossissement de 50 au Microscope Optique


Nature du matériau	Humidité Initiale T0	Humidité finale T28	Cotisation visuelle	Qi (Log ₁₀ UFC/cm³)	Qf (Log ₁₀ UFC/cm³)	Test d'incertitude statistique (IC 95%)	Classe finale
Fibres de posidonie	20.93	36	0	4.39	4.22	Pas de différence significative	Résistant
Fibres de Chanvre	5.5	16	1	4.24	5.82	Différence significative	Non-Résistant
Fibres de PET Bicomposant	0.14	1.1	0	4.24	4.02	Pas de différence significative	Résistant
Fibres de Chanvre/10%PET	6.61	18.2	1	4.16	>5.32	Différence significative	Non-Résistant
Fibres de Posidonie/10%PET	9.21	23	0-1	4.45	4.34	Pas de différence significative	Résistant

Fibres de posidonie Fibres de Chanvre

Fibres de PET Bicomposant

Panneaux de Chanvre/10%PET

Pannaux de Posidonie/10%PET