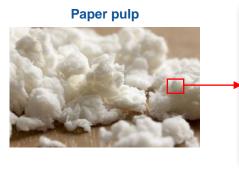
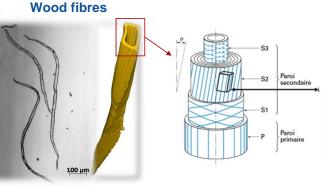
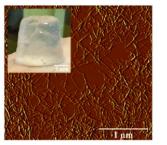
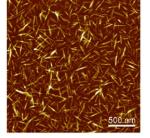

Matériaux cellulaires architecturés et biosourcés, obtenus par solidification d'hydrogels de nanofibres de cellulose

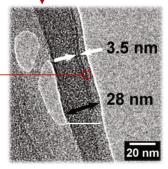

Florian Martoïa¹, Pierre Dumont¹, Laurent Orgéas^{2,} Elodie Boller³


⁽¹⁾ LaMCoS (CNRS/INSA-Lyon/Univ. Lyon)
⁽²⁾ 3SR Lab. (CNRS/Grenoble INP/Univ. Grenoble Alpes)
⁽³⁾ ESRF –The European Synchrotron, Grenoble,


Nanocelluloses: Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs)

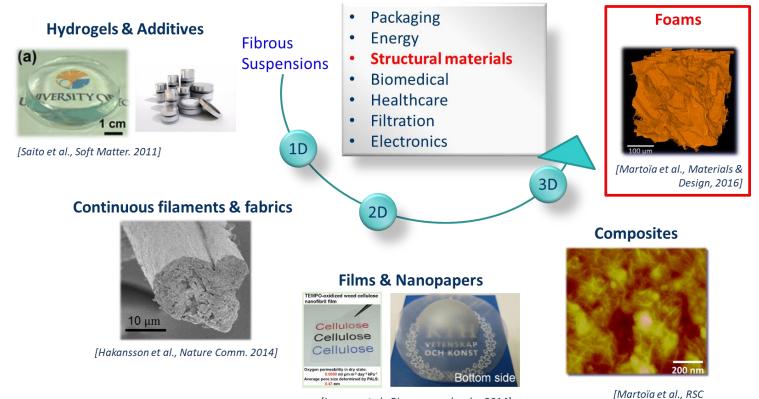


[Toungara et al., 2015]


[Donaldson et al., Wood Sci. Technol., 2007]

Cellulose nanofibrils (CNFs)

Cellulose nanocrystals (CNCs)

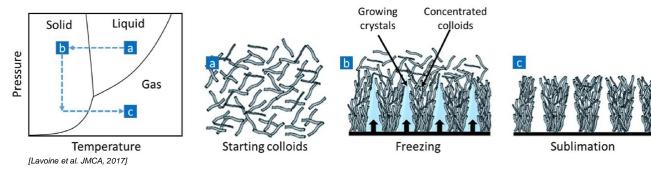

Fibre cell wall

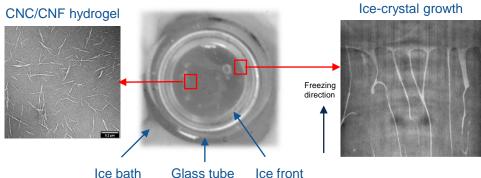
Bundles of cellulose fibrils

CNTS

- CNFs and CNCs are extracted in the form of hydrogels
- > Slender biobased nanofibres $10 \le \frac{l}{d} \le 300$
- > Oustanding intrinsic mechanical properties ($E_{\rm L} \sim 100 200 \text{ GPa}$)

Potential applications of CNFs and CNCs

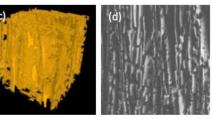

[Larsson et al., Biomacromolecules 2014] [Fukuzumi, Biomacromolecules 2011, 2013]



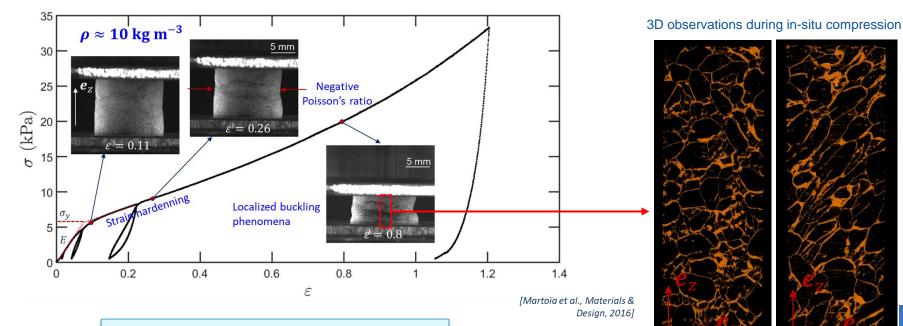
Advances, 2016]

Ice-templated nanocellulose foams

Basis of ice-templating



CNTS


Glass tube Ice bath

Freeze-dried CNC/CNF foam

Nanocellulose foams: promising biobased cellular materials for structural applications?

Typical compression response of nanocellulose foams

- Elasto-plastic behaviour with marked consolidation
- Large ductility and auxetic behaviour
- Promising use as shock absorber materials

ID19 beamline, ESRF, voxel size: 0.323 µm3

P 5

Nanocellulose foams: promising biobased cellular materials for structural applications?

E_s = 10-15 GPa! PVC foams IF Foams through quenching Ε α (ρ/ρ_c) ^{2.3} 5 µm 30 µm 0,1

Foam cell wall = nanopaper

[Ashby and Gibson, 1999] [Sehaqui et al., Soft Matter 2010]] [Sescousse et al., Carbohydr. Polym., 2011]

1000000

100000 10000

10

1

0,001

0,01

ρ/ρ,

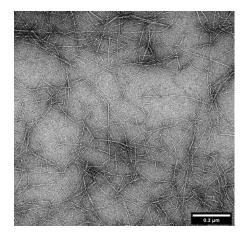
E (kPa) 1000 100

- > Limited range of densities ($\rho < 150 \text{ kg m}^{-3}$)
- > Lower mechanical properties than most of classical polymer foams
- → Better understanding of process-induced foam microstructures!

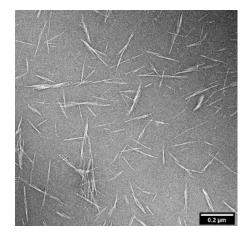
Motivations and objectives

1. Prepare homogeneous hydrogels with high concentrations of cellulose nanofibres!

- 2. Characterise the forming of ice-templated foams
 - Effect of the nanofibre aspect ratio: CNFs vs CNCs
 - Effect of the nanofibre content


3. Assess the mechanical performances of ice-templated foams

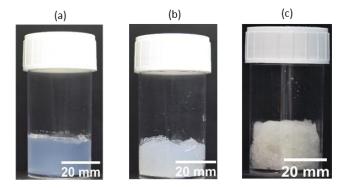
Materials


Cellulose nanofibrils (CNFs) and Cellulose nanocrystals (CNCs)

- TEMPO-oxidised CNFs supplied by the Centre Technique du papier
 - Initial hydrogel concentration c = 1.2 wt%
 - Content of carboxyl groups: 1.5 mmol g⁻¹

 $\bar{d} = 7 \text{ nm and } \bar{l} \alpha \text{ 1200 nm}$ $r = \bar{l}/\bar{d} \approx 300$

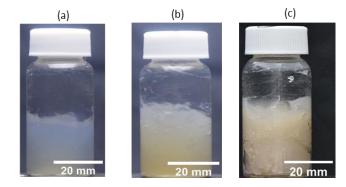
- CNCs supplied by CelluForce (Canada)
 - Spray-dried powder
 - Content of sulfate half ester groups: 0.25 mmol g⁻¹


 $\bar{d} = 12 \text{ nm and } \bar{l} \alpha \text{ 150 nm}$ $r = \bar{l}/\bar{d} \approx 12$

Materials

Preparation of concentrated and highly concentrated CNF and CNC hydrogels

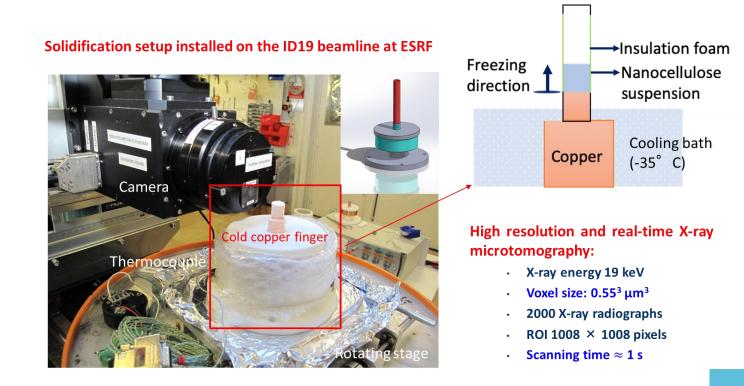
- TEMPO-oxidised CNF hydrogels
 - Concentration procedure^(*): mechanical stirring under vaccum at T = 60°C


(*) Martoïa et al. Carbohydrate Polymers, 2022

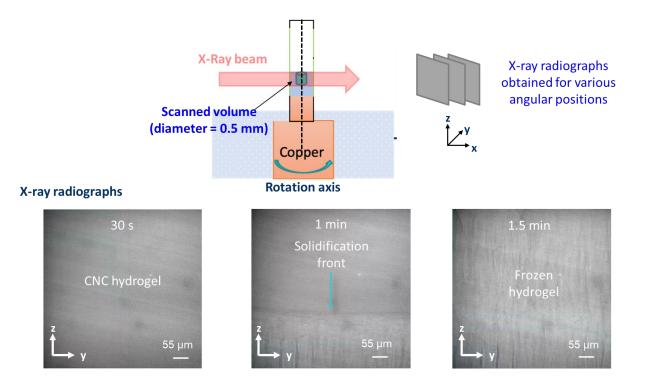
(a) 1.2 wt.% (ϕ_f = 0.8%), (b) 2 wt.% (ϕ_f = 1.4%), (c) 8.6 wt.% (ϕ_f = 5.9%)

 Mechanical stirring at high velocity (12000 rpm)^(*) at ambiant température

(*) Martoïa et al. Carbohydrate Polymers, 2022

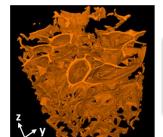


(a) 6.5 wt.% (ϕ_f = 4.4%), (b) 10 wt.% (ϕ_f = 6.9%), (c) 24.5 wt.% (ϕ_f = 17.9%).


Average nanofibre-nanofibre contacts^(*) per nanofibre $\overline{z} \gg 2 \rightarrow$ highly concentrated regime!

In situ unidirectionnal solidification experiments during synchrotron X-ray microtomography

In situ unidirectionnal solidification experiments during synchrotron X-ray microtomography


In situ undirectionnal solidification experiments during synchrotron X-ray microtomography

CNC hydrogel (9 wt%)

990 s

926 s

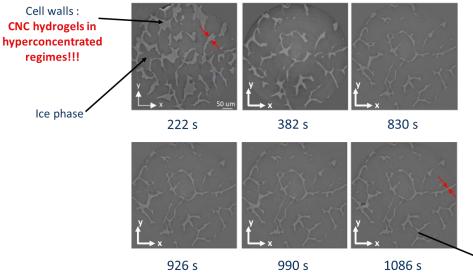
CNC phase at the end of the solidification

 $400 \times 400 \times 560 \ \mu m^3$

cell walls (CNC)

1086 s

 Growth of ice crystals along the vertical direction


> Longitudinal ice growth rate $V_{\parallel} \sim 1 \ \mu m \ s^{-1}$

In situ undirectionnal solidification experiments during synchrotron X-ray microtomography

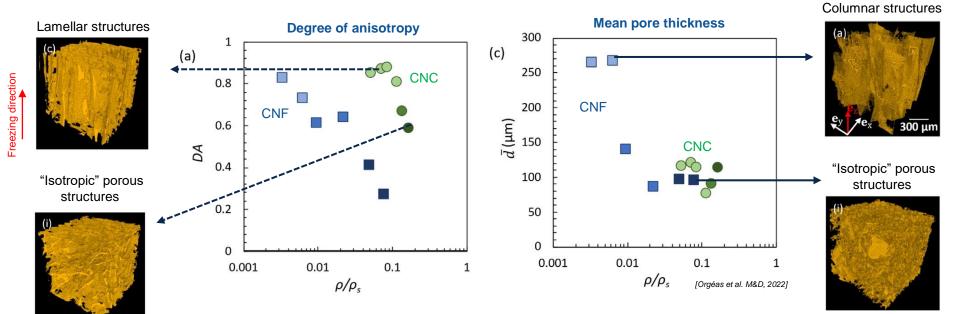
CNC hydrogel (9 wt%)

Cross section (xy plane) :

CNC phase at the end of the solidification phase

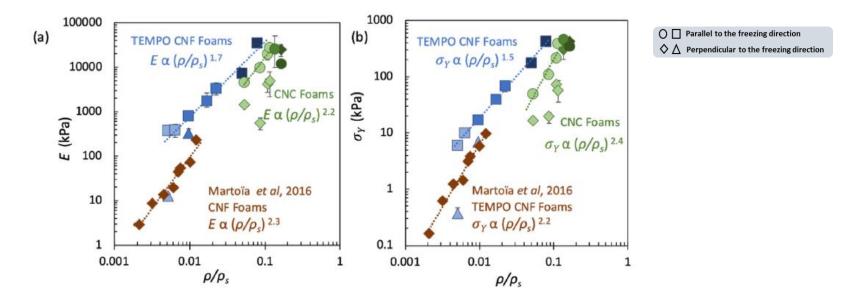
z v v

 $400 \times 400 \times 560 \ \mu m^3$


cell walls

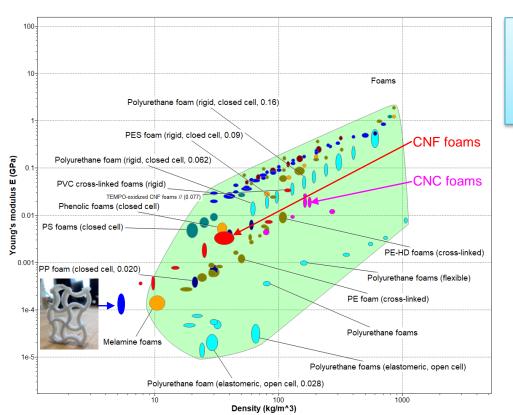
(CNC)

- ➢ Reduction of cell walls thickness → lateral growth of ice crystals
- > Lateral ice growth rate $V_{\perp} \sim 7 \times 10^{-3} \,\mu\text{m. s}^{-1}$
- Squezzing and (progressive) consolidation mechanisms of CNC hydrogel

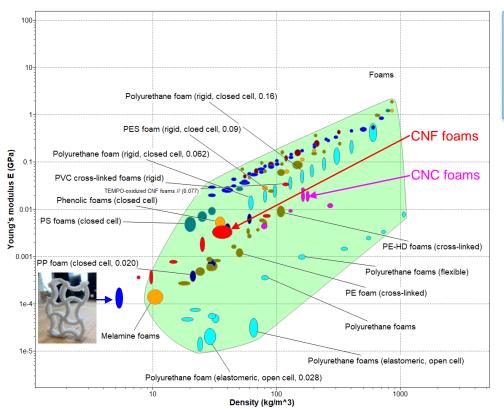


Effect of the nanofibre aspect ratio and content

- → Drastic effect of the nanofibre aspect ratio on the foam microstructure
- → Microstructures of foams switch from anisotropy to isotropy while increasing the nanofibre concentration or aspect ratio.
- → Crucial role of the rheology (restrain ice-crystal growth + promote ice-crystal nucleation)

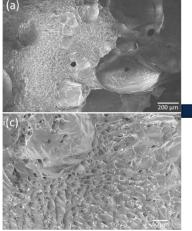

Mechanical properties: effect of the relative density and aspect ratio of cellulose nanofibres

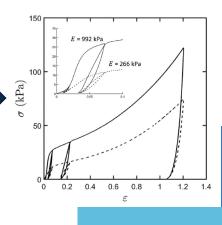
- → Pronounced mechanical anisotropy
- → Increasing the nanofibre content and aspect ratio leads to substantial improvement of the foam stiffness *E* and yield strength σ_Y


Mechanical properties: effect of the relative density and aspect ratio of cellulose nanofibres

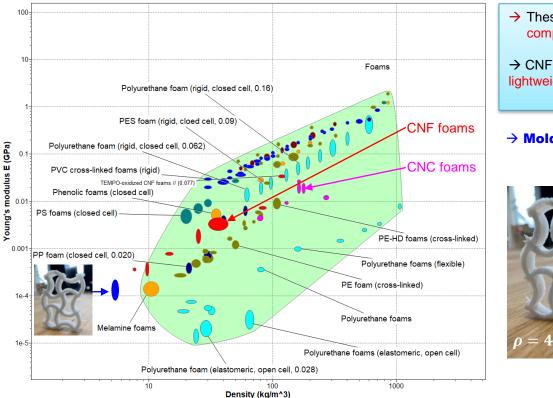
→ These biobased materials exhibit mechanical properties that are comparable with rigid commercially-available polymer foams

 \rightarrow CNF foams exhibit interesting specific mechanical properties for lightweight structural applications.

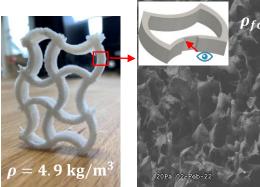

Mechanical properties: effect of the relative density and aspect ratio of cellulose nanofibres

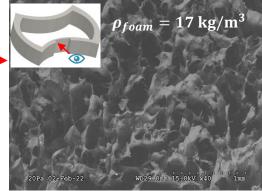


→ These biobased materials exhibit mechanical properties that are comparable with rigid commercially-available polymer foams

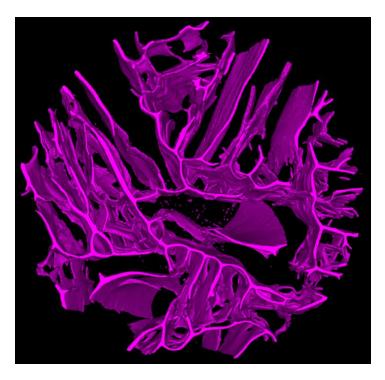

 \rightarrow CNF foams exhibit interesting specific mechanical properties for lightweight structural applications.

\rightarrow Bimodal foams: mechanical strirring during freezing


Mechanical properties: effect of the relative density and aspect ratio of cellulose nanofibres



→ These biobased materials exhibit mechanical properties that are comparable with rigid commercially-available polymer foams


→ CNF foams exhibit interesting specific mechanical properties for lightweight structural applications.

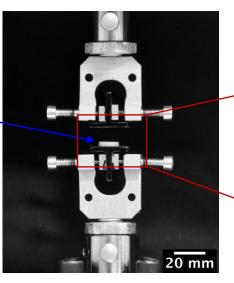
\rightarrow Mold design \rightarrow foams with two-scale pore structure

Merci de votre écoute !

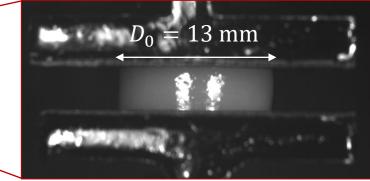
Articles relatifs à ces travaux :

Martoïa et al., M&D (2016)

Orgéas et al. M&D (2023)

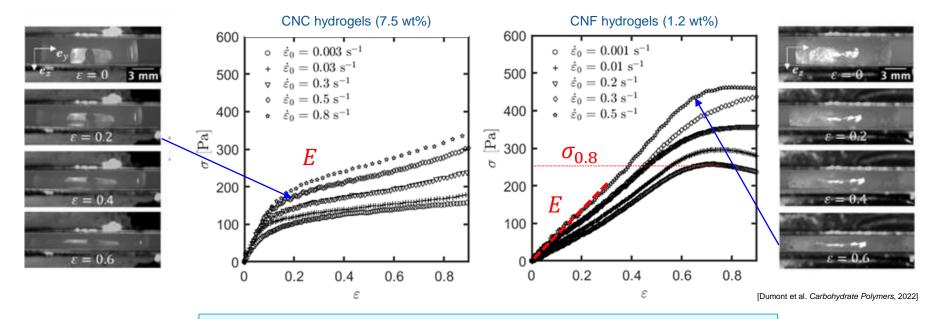

Dumont et al. Carb. Polym. (2023)

Elongational rheology of concentrated hydrogels


Lubricated compression experiments on cylindrical samples

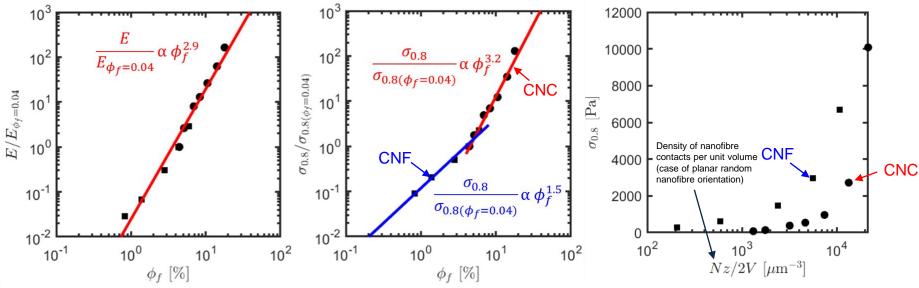
Lubricated plate surfaces with silicone oil $(\mu = 0.02 \text{ Pa s})$

 Electromechanical testing machine equipped with parallel plates


- Cylindrical samples: diameter $D_0 = 13 \text{ mm}$ and height $h_0 = 3 \text{ mm}$
- Constant compression velocity v_0 : 0.2 to 150 mm min⁻¹
- Monotonic and cyclic load-unload compression tests

[Martoïa et al. Carbohydrate Polymers, 2022] [Dumont et al. Carbohydrate Polymers, 2022]

Elongational rheology of concentrated hydrogels


Lubricated compression experiments on cylindrical samples: effect of the strain rate

- → Regarless of the strain-rates: homogeneous one-phase flow behaviour!
- → Elasto-viscoplastic behaviour typical of many soft-glassy materials
- \rightarrow TEMPO-oxidised CNF hygrogels exhibited higher elastic and plastic properties compared with CNC hydrogels \rightarrow Effect of the nanofibre aspect ratio!

Elongational rheology of concentrated hydrogels

Lubricated compression experiments on cylindrical samples: effect of the nanofibre content and aspect ratio

[Dumont et al. Carbohydrate Polymers, 2022]

- → Power-law dependance of *E* and $\sigma_{0.8}$ with the hydrogel concentration
- → Effect of nanofibre content and aspect ratio
- → Flow stress is not uniquely related to nanofibre entanglement (role of colloidal interactions?)

Fabrication of foams

Unidirectional solidification setup CNF foam CNC foam (a) Zone 3 Zone 3 Thermocouple (T_2) Thermocouple (T_1) Square plates of foams PU foam (40×40×10 mm³) - 10 mm Container-Thermally insulated plate (2 mm) Base of the mould $\rho/\rho_s \approx 0.119$ Silicone oil (-30 °C) Freezing direction Thickness Zone 2 Zone 2 (b) 25 Freeze-drying 20 Top of the mould 15 20 mm Temperature (°C) 10 5 $\rho/\rho_s \approx 0.115$ 0 -5 -10 Bottom -15 Zone : Zone 1 -20 $\rho/\rho_s \approx 0.134$ 1000 2000 3000 0 Time (s) Dense laver

cnrs

→ Two solidification fronts initiated from the bottom (points B-C) and the top (points B'-C') of the mould → Produced foams systematically exhibit 3 distinct zones in their microstructure

P 23