Octobre 2023 – Bagnères de Bigorre

Alexandre COPIN

*Directrices de thèse :*Sandrine MARCEAU
Marielle GUEGUEN MINERBE

Matériaux 100% biosourcés pour des constructions confortables et démontables

CONTEXTE

- Produits actuels contiennent fibres synthétiques ou liants minéraux
- Besoin d'alternatives **totalement biosourcées**
 - Impact environnemental
 - Recyclabilité

Isolants semi-rigides en fibre de bois (STEICO)

SOLUTIONS PROPOSÉES

Biocimentation

- Substrat contenant sel de calcium
- Microorganismes(généralement *Bacillus*)
- Précipitation de CaCO₃ → matrice

Bio-briques utilisant le carbonate de calcium bioprécipité (Lambert & Randall, 2019, p. 89)

Mycélium

- Substrat végétal
- Inoculation de mycélium

Blocs de composites biosourcés avec matrice mycélium (Elsacker et al., 2019)

MÉTHODOLOGIE

Mise en œuvre

- Sélection des espèces végétales, mycéliennes et microbiennes
- •Procédé de production

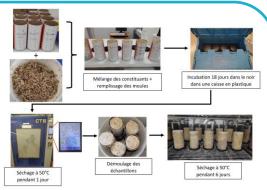
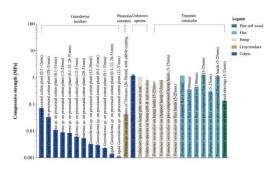



Illustration du procédé de fabrication de mycocomposites (Projet Tom Lambre 2023)

Caractérisation

- Propriétés intrinsèques des matériaux
- Propriétés fonctionnelles

Résistance à la compression de mycocomposites (Elsacker et al., 2020)

Utilisation architecturale de bio-briques de mycélium : Tour Hy-Fi au MoMA, 2014

Système constructif

- •Adapter à l'industrie de la construction
- •Par exemple briques ou panneaux

Durabilité

- •Impact environnemental
- Durabilité
- •Fin de vie

Alexandre COPIN

alexandre.copin@univ-eiffel.fr

