ETUDE DE LA MICROSTRUCTURE D'UN BÉTON DE BOIS AU COURS DU SÉCHAGE

Antoine Gufflet¹, Alexandra Bourdot¹, Farid Benboudjema¹

¹ENS Paris-Saclay, Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, CentraleSupelec

Contexte

- · Les bétons biosourcés sont sujets à d'importants retraits du fait des granulats végétaux sensibles aux variations d'humidité relative.
- · Afin de prédire ce retrait, il est nécessaire de savoir quel schéma d'homogénéisation convient à ce type de matériau.
- · Pour appliquer un schéma d'homogénéisation, la connaissance de la morphologie et des fractions volumiques de chaque phase est requise.

Objectif de l'étude

Estimer les fractions volumiques de chaque phase et investiguer la morphologie d'un béton de bois au cours du séchage.

Objectif global

Evaluer le risque de fissuration par retrait d'un béton de bois

Béton de bois Fractions massiques Granulats de bois humide Ciment 11% Naturel Prompt (CNP) 54% Eau du robinet 35%

- On peut distinguer trois quantités d'eau :
- L'eau initialement présente dans les granulats humides.
- L'eau ajoutée qui est absorbée par les granulats.
- L'eau ajoutée qui réagit avec le ciment pour former le liant.

ESTIMATION DES FRACTIONS VOLUMIQUES

Approche expérimentale Scan au tomographe Reconstruction 3D Résolution 42,3µm/px rayons X Schéma de principe d'une tomographie aux rayons X **Segmentation par IA** Architecture: Unet 2D Optimizer : Adadelta Légende Granulats Pâte cimentaire Vue de coupe du béton de bois après 7 jours de séchage en conditions de température et d'humidité relative fixe (22°C et 50%HR) Colormap après segmentation par IA

14.4

Approche analytique

O Principe:

Remonter aux fractions volumiques à partir des fractions massiques, connaissant les masses volumiques du béton, du ciment et de l'eau.

> La formulation nous permet d'écrire qu'au démoulage au 2e jour :

$$\frac{1}{\rho_{b\acute{e}ton}} = \frac{0,54}{\rho_{CNP}} + \frac{0,35}{\rho_{eau}} + \frac{0,11}{\rho_{bois}^{humide}}$$

On peut calculer les différents volumes :

$$V_{\text{béton}} = V_{\text{liant}} + V_{\text{granulat}} + V_{\text{gd pores}}$$

Avec:

$$V_{\text{liant}} = \frac{m_{CNP}}{\rho_{CNP}} + \frac{m_{eau}^{eff}}{\rho_{eau}}$$

$$V_{liant} = \frac{m_{CNP}}{\rho_{CNP}} + \frac{m_{eau}^{eff}}{\rho_{eau}}$$

$$V_{granulat} = \frac{m_{bois}^{humide}}{\rho_{bois}^{humide}} + \frac{m_{eau}^{abs}}{\rho_{eau}}$$

V_{gd pore} pris à 14,4% de V_{béton}

- > Le volume d'air apporté lors du malaxage du béton est difficile à estimer et sera pris à 14,4% en moyennant les résultats de l'approche expérimentale.
- > L'absorption du bois évolue selon le temps d'immersion. Les fractions volumiques ont été estimées pour 4 valeurs d'absorption d'eau différentes.

15min : 147%

Absorption à 4h : Absorption à 48h Coefficient d'absorption considéré

■ Granulats ■ Liant ■ Grands pores

de bois en fonction du coefficient d'absorption choisi

Résultats

- ❖ La morphologie du béton de bois étudié est de type matrice-inclusion.
- volumiques fractions **❖** Les varient pas significativement au cours du séchage.
- Les fractions volumiques obtenues expérimentalement Evolution des fractions volumiques du béton correspondent à une faible absorption d'eau par les granulats qui serait de l'ordre de 65%.

Conclusions & Perspectives

- > Les fractions volumiques des phases restent constantes au cours du temps, ce qui simplifiera grandement l'application de schémas d'homogénéisation.
- > L'eau absorbée par les granulats a un impact conséquent sur les fractions volumiques du béton.
- > L'analyse d'image permet de mesurer la porosité de grande taille dans le béton, ce qui est difficile à calculer analytiquement.

sur Dragonfly

2 jours

(démoulage)

7 jours

Evolution des fractions volumiques du béton

de bois en fonction du temps de séchage