5ème Ecole d'automne du GDR MBS

Eco-conception des matériaux biosourcés et géosourcés : de la ressource à la fin de vie

12 au 16 octobre 2025, Douai

Du mortier romain à la conception de bétons végétaux : compréhension des mécanismes de durcissement

Morgan CHABANNES Enseignant-Chercheur – IMT Nord Europe

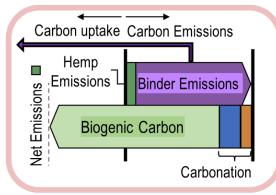
morgan.chabannes@imt-nord-europe.fr

Sommaire

- ❖ Pourquoi s'intéresser au mortier romain pour les bétons bio-sourcés ?
- Les différents types de chaux et mécanismes de durcissement associés
- ❖ De la définition du terme « pouzzolane » Focus sur les matériaux pyroclastiques du Velay
- ❖ Le système pouzzolane—chaux—eau : caractérisation de la cinétique de durcissement et enjeux scientifiques avec les granulats biosourcés

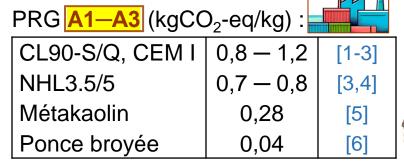
Contexte environnemental

Chaux (Différents types de chaux existent)



Ciment Souvent présent dans les liants commerciaux

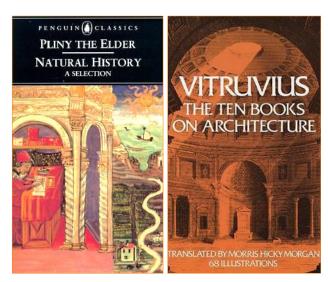
Chaux formulée FL (NF EN 459-1) : chaux calcique CL (hydratée) combinée avec d'autres liants i.e. NHL, CEM I ou composé, additions pouzzolaniques, filler calcaire, laitier granulé de haut fourneau


Granulat végétal

- Chènevotte de chanvre
- Anas de lin (contexte régional)
- Balles de riz
- Etc.
- [1] PAO George et al., J. Clean. Prod., 18, 1171-1176, 2010
- [2] Adbri Lime Products EPD (Australia)
- [3] J. Diaz-Basteris et al., Constr. Build. Mater., 326, 126863, 2022
- [4] Jones & Hammond, Inventory of Carbon & Energy V3.0 Beta
- [5] Cradle-to-gate Ecoprofile data sheet of Argical M1000 (Imerys, France)
- [6] Cabrera-Luna et al., Cement Concr. Compos., 124, 104236, 2021
- [7] J. H. Arehart et al., J. Clean. Prod., 266, 121846, 2020

[7] J. H. Arehart et al., 2020

Exemple : FL A $40 \le \%_m Ca(OH)_2 < 80$



Le « béton romain »

Dépôts pyroclastiques faiblement consolidés (cendres, lapilli, scories) Adapté de [8] Seymour et al., Sci. Adv. 9, 2023 Volcanic Ash Sand Eau de mer Chaux vive Water en fragments Aggregate (tephra)

« Pouzzolanes »

Matériaux divers et complexes (faciès minéralogique, géochimie, texture pétrographique)

Tuf volcanique qui a pu être exploité historiquement pour la pierre de construction (pierre de pouzzolane)

- Souvent de nature basaltique dans la région du Massif Central
- ➤ Vitruve (Pozzuoli, Italie) → cinérites trachytiques altérées en tuf zéolitique dénommé « tuf jaune napolitain »

Cathédrale romane du Puy-en-Velay — 43 (UNESCO)

Le « béton romain »

- Ratio massique chaux/pouzzolane = 1/2 à 1/4 (soit 20 à 33%) de chaux)

 [9] Jackson et al., American Mineralogist 98, 2013
 - L'addition de petites quantités de matériaux pouzzolaniques aux chaux et ciments n'est pas toujours très rationnelle
 - Des proportions importantes permettent d'exploiter au mieux les propriétés et avantages de la pouzzolane
- Points faisant l'objet de controverses et de différences d'interprétation des traités antiques d'architecture (comme De Architectura, Vitruve, le siècle av. J.-C.) :
 - Le gâchage dans l'eau de mer

[10] L. Vicat, Nouvelles études sur les pouzzolanes artificielles comparées à la pouzzolane d'Italie dans leur emploi en eau douce et en eau de mer, 1846

Le process d'hydratation de la chaux vive

Wet lime putty VS. Hot mixed

méthode traditionnelle : la chaux vive s'hydrate directement mélangée avec le sable et la pouzzolane sans excès d'eau

Bétons biosourcés et bâti ancien

20–30 av. J.-C

Néolithique

Période Gréco-Romaine [...]

« Bâti ancien »

1948

Reconstruction

RT 1974

RE 2020

 \sim 7000 av. J.-C.

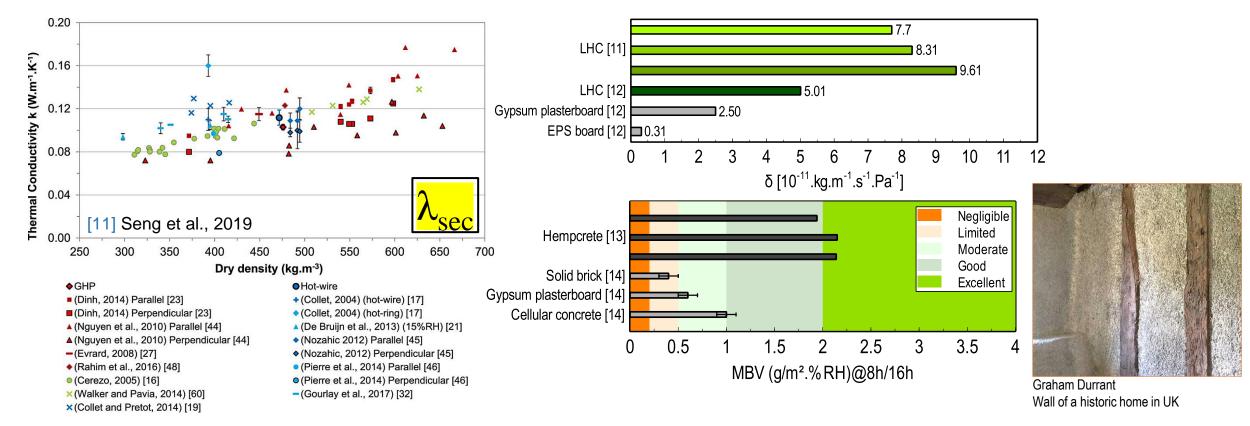
Çatal Höyük (Anatolie centrale)

- Terre cuite
- Pierre naturelle
- Torchis, Pisé
- Murs à pans de bois
- Chaux

Préfabrication lourde Corps en béton de pouzzolane (caverneux)

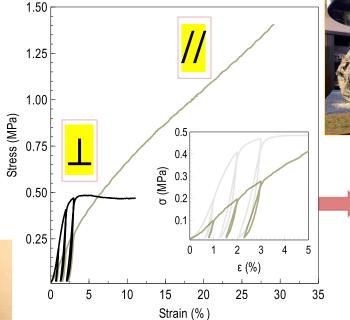
- Confort d'été (surchauffe)
- Impact CO₂ des matériaux

- Parois perspirantes
- Forte inertie thermique
- « Paroi froide »


- Bétons végétaux (bétons de chanvre)
- Terre, chaux ou plâtre avec liège, pouzzolane, argile expansée

Bétons biosourcés et bâti ancien

- [11] Seng et al., Characterization of a precast hemp concrete. Part I: Physical and thermal properties. Journal of Building Engineering 24, 2019, 100540
- [12] Pietrak et al., Magnesium-hemp concrete is less vapor-permeable than lime-hemp concrete while the cup method is still problematic. Building and Environment 280, 2025, 113112
- [13] Collet et al., Comparison of the hygric behaviour of three hemp concretes. Energy and buildings 62, 2013, 294-303
- [14] Rode et al., Moisture Buffering of building materials. Technical University of Denmark, BYG Report No. R-127, 2005



Bétons biosourcés et bâti ancien

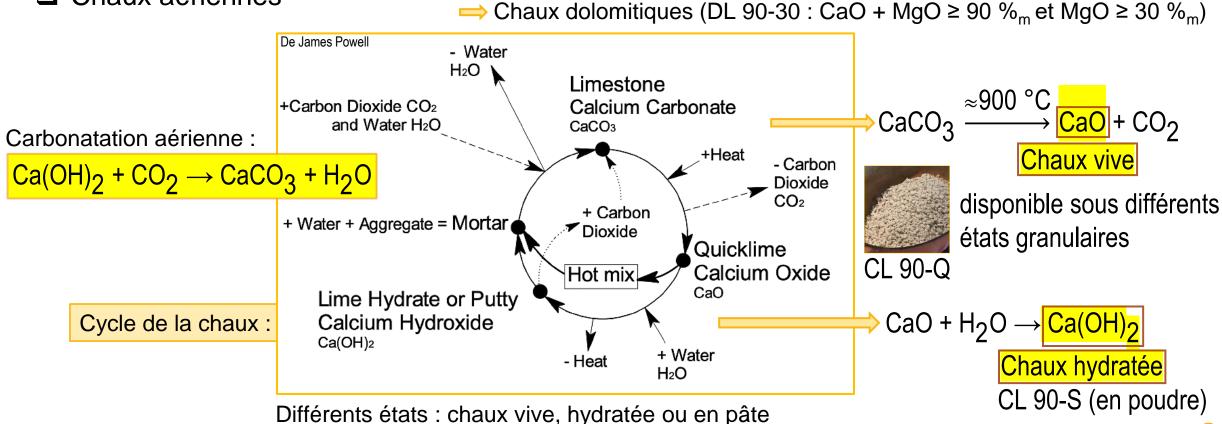
Réhabilitation thermique

- > En neuf: R ≥ 5 m².K.W⁻¹
- ➤ Plus adapté à l'existant
- Conservation de l'inertie thermique (densité)
- Effusivité thermique (effet « paroi tiède »)
- Préservation de l'expression architecturale (correction thermique intérieure)
- Perspirance (tampon hydrique)

Comportement mécanique

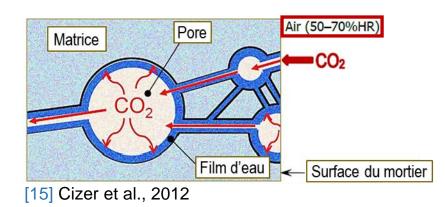
Performances mécaniques applicatives aléatoires

- Compacité
- Conditions de cure
- Couple liant–végétal
- Fraction minérale



Chaux aériennes

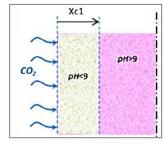
⇒ Chaux calciques (CL 90 : CaO + MgO ≥ 90 %_m)


→ Chaux dolomitiques (DL 90-30 : CaO + MgO ≥ 90 %_m et MgO ≥ 30 %_m)

- Durcissement par séchage et carbonatation
- Mécanisme réactionnel

(1)
$$Ca(OH)_2 \leftrightarrow Ca^{2+} + 2OH^-$$

(2)
$$H_2CO_3 \leftrightarrow H^+ + HCO_3^-$$

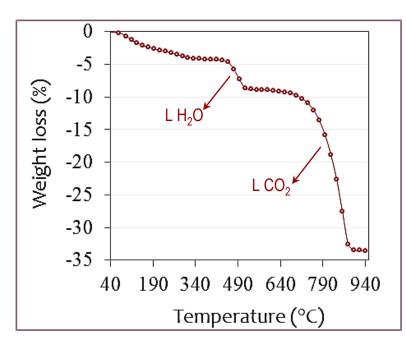

(3)
$$\operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-} \to \operatorname{CaCO}_3 \downarrow$$

$$(0) \quad Ca \rightarrow CaCO3\downarrow$$

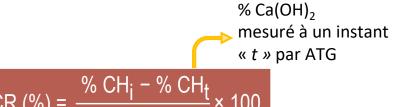
(4)
$$| Ca(OH)_2(s) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(aq) + 74 \text{ kJ/mol}$$

- Caractérisation de la cinétique de carbonatation
- Indicateur coloré (phénolphtaléine) : obtenir des indications sur la progression du front de carbonatation

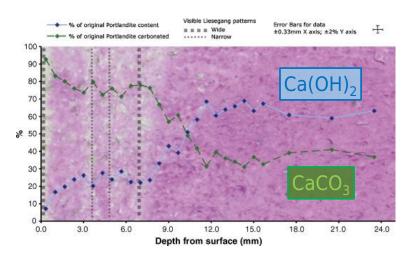
- Suivi massique :
$$CR (\%) = \frac{\Delta M/Ca(OH)_2(\%)}{35.1} \times 100$$


 $CO_2 + H_2O \leftrightarrow H_2CO_3$

 $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$



- Thermogravimétrie (ATG)

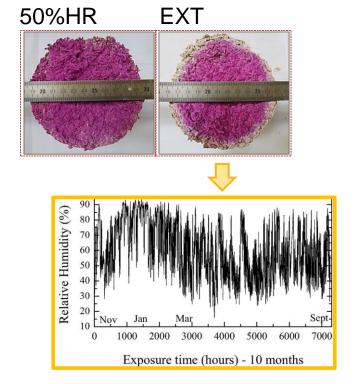


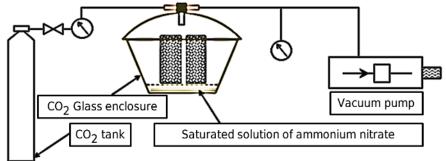
$$Ca(OH)_2$$
 (%) = L H_2O (%) × k_1
 $CaCO_3$ (%) = L CO_2 (%) × k_2

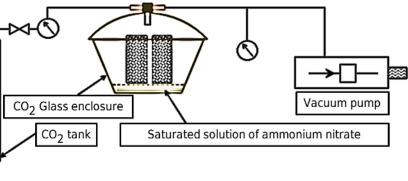
$$k_1 = M_W [Ca(OH)_2] / M_W [H_2O]$$

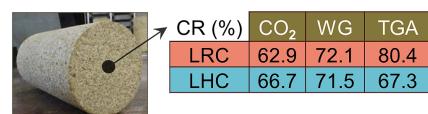
 $k_2 = M_W [CaCO_3] / M_W [CO_2]$

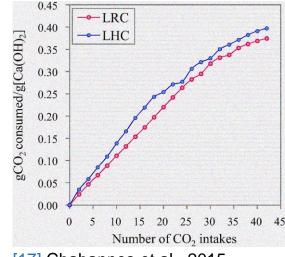
Quantité initiale de Ca(OH)₂



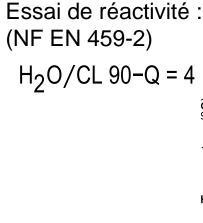

[16] Lawrence et al., 2006

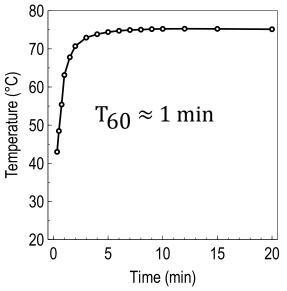


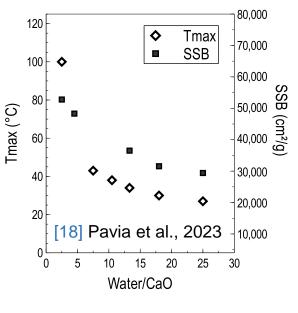


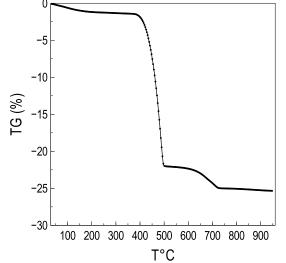

- Cas de la carbonatation accélérée cyclique

[17] Chabannes et al., 2015






Quelques éléments à propos de l'hydratation de la chaux vive


CaO + H₂O
$$\rightarrow$$
 Ca(OH)₂ + chaleur (\triangle H = -65,2 kJ.mol⁻¹) \Longrightarrow 1kg (CaO) + 0,32 kg (H₂O) \rightarrow 1,32 kg (Ca(OH)₂)

 $\begin{array}{c|c} & g.cm^{-3} \\ \hline CaO & \approx 3,3 \\ \hline Ca(OH)_2 \approx 2,2 \end{array}$

- ☐ Chaux ayant des propriétés hydrauliques
- ⇒ Chaux formulées (FL)
- → Chaux hydraulique naturelle (NHL)

19ème siècle : émulation pour remplacer les mélanges chaux—pouzzolane de l'époque Romaine Redécouverte de l'hydraulicité dans un contexte de renouveau scientifique et technique 1817-18 : Vicat définit l'indice d'hydraulicité et publie ses travaux sur les propriétés hydrauliques de la chaux → Ouvre la voie au ciment Portland

NHL produite par calcination de calcaires plus ou moins argileux/siliceux

$$\label{eq:indiced} \text{Indice d'hydraulicit\'e}: \quad \text{i} = \frac{\text{m(SiO}_2) + \text{m(Al}_2\text{O}_3) + \text{m(Fe}_2\text{O}_3)}{\text{m(CaO)} + \text{m(MgO)}} \cong \frac{\text{m(SiO}_2)}{\text{m(CaO)}}$$

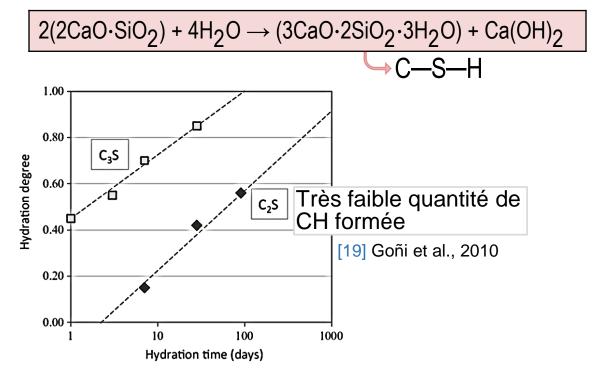
Une partie du CaO se combine avec la silice réactive à \approx 1200 °C :

$$2\text{CaCO}_3 + \text{SiO}_2 \rightarrow \underbrace{(2\text{CaO} \cdot \text{SiO}_2)} + 2\text{CO}_2$$

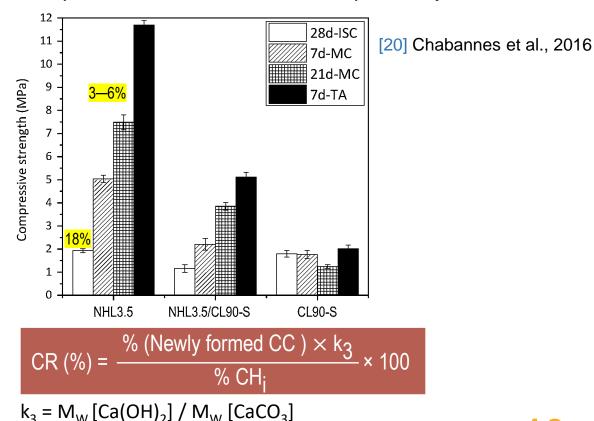
$$\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2$$

$$\text{CaO} + \text{CaO}_2 \rightarrow \text{Ca}(\text{OH})_2$$

	Chimique		Minéralogique	
•	% CaO	50 - 70	% Ca(OH) ₂	30 - 50
	% SiO ₂	6 - 20	% C ₂ S	20 - 40
	LOI (%)	15 — 20	% CaCO ₃	5 — 20


Oxydes d'aluminium et de fer en très petites proportions \rightarrow C₃A, C₄AF

CL 90 ≥ 80 s/oNHL 2 ≥ 35 ≥ 2 NHL 3,5 ≥ 25 $\geq 3,5$ NHL 5 ≥ 15 ≥ 5 Solution of the content of the conten		% Ca(OH) ₂	R _{C – 28jours} min (MPa)	
NHL 3,5 ≥ 25 $\geq 3,5$	CL 90	≥ 80	s/o	65 % HR ⇒ Carbonatation aérienne
> 00 % HP -> Price hydraulique (hydratation du C S)	NHL 2	≥ 35	≥ 2	
NHL 5 ≥ 15 ≥ 5 ≥ 5 Prise hydraulique (hydratation du C_2S)	NHL 3,5	≥ 25	≥ 3,5	
	NHL 5	≥ 15	≥ 5	$>$ 90 % HR \Rightarrow Prise hydraulique (hydratation du C_2S)



- Durcissement par hydratation et carbonatation
- Réaction d'hydratation du C₂S :

R-compression mortiers de chaux après 28 jours de cure :

[19] Goñi et al., Quantitative study of hydration of C_2S and C_3S by thermal analysis. J. Therm. Anal. Calorim 102(3), 965-973, 2010

[20] Chabannes et al., Effect of curing conditions and Ca(OH)₂-treated aggregates on mechanical properties of rice husk and hemp concretes using a lime-based binder. Constr. Build. Mater. 102(1),821-833, 2016

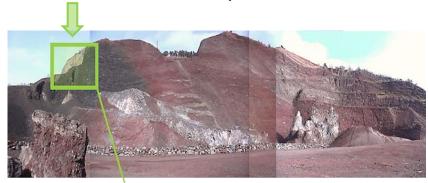
5ème école d'automne du GDR MBS – M. CHABANNES

Définition

- Historique : cendres trachytiques altérées en tufs zéolitiques (« Pouzzoles »)
- Géologique : par extension dans le langage courant, l'ensemble des projections volcaniques dépôts pyroclastiques ou pyroclastites analogues à celles de Pouzzoles mais pouvant présenter différentes lithologies et généralement de faible granulométrie
- → Dépôts pyroclastiques faiblement consolidés : bombes (>64mm), lapilli (2—64mm), scories fines/cendres (<2mm)</p>
- → Induration dans le temps (gravité, cimentation par précipitation de minéraux secondaires, altération hydrothermale)
 - Tufs lithifiés
 - Brèches agglomérées
 - Conglomérats de lapilli
 - Cinérites

Dépôts pyroclastiques consolidés (tufs)

Crédit photo : Yvan Lemeur Marais de Limagne (Devès)



→ Phénomènes post-éruptifs précoces liés à des altérations ou soudures rapides

Ex : Ancienne carrière du Mont Denise (Devès) :

Partie centrale = Cône de scories autour du cratère → édifice volcanique strombolien avec faciès cœur de cône (rouge) et bas de cône (noir)

Les scories peuvent recouvrir des coulées de lave basaltique solidifiée (éruption effusive)

Tuf à palagonite = altération du verre volcanique basaltique (interaction eau-magma)

Volcanisme de type Surtseyens (explosif)

 Les ignimbrites : formées par induration thermique/soudure à chaud (fusion partielle des fragments) → présentes principalement au niveau du Mont-Dore, quasi-absentes dans la plupart des autres provinces volcaniques du Massif Central

Nappe de ponce Photo R. Cadiou

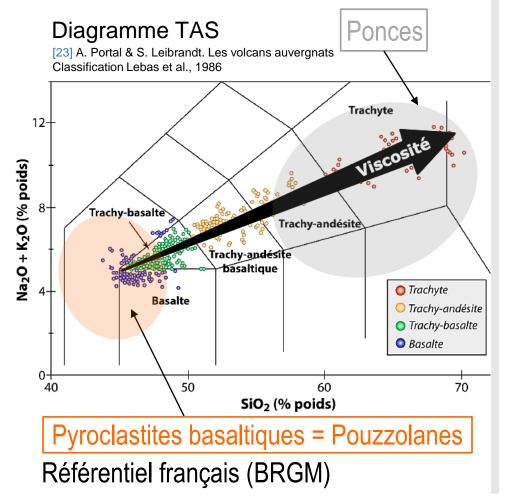
- L'ensemble de ces formations pyroclastiques constitue les pouzzolanes naturelles
 - → Entité géologique
- « Matériau pouzzolanique » (ASTM C125-07 ou C618) : englobe les pouzzolanes dites artificielles

Tout matériau siliceux ou silico-alumineux, naturel ou artificiel, qui ne possède pas lui-même de propriétés hydrauliques, mais qui, sous forme finement divisée et en présence d'eau, est capable de fixer la chaux à température ordinaire pour former des hydrates générateurs de résistance

[21] Baudry & Camus, 1980

- ⇒ Entité physico-chimique
- ☐ Les pouzzolanes naturelles

Empire Romain (sous Auguste)

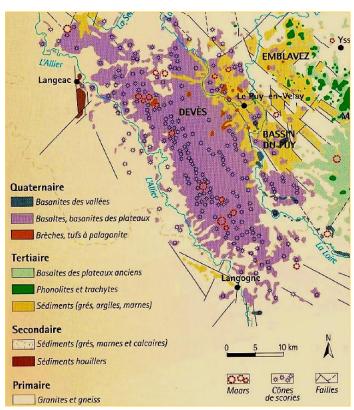


Provinces volcaniques du Massif Central Gisements de pouzzolane (••••): ponces Principales provinces et ages du volcanisme alcalin du Massif 100 km Central Français (Ma: millions d'années) 1 - Chaîne de la Sioule (5 à 1 Ma) 8 - Causses (14 à 2 Ma) **BRGM** 2 - Chaîne des Puys (150 000 à 3500 ans) 9 - Forez (15 à 13 Ma) 10 - Deves (2,7 à 0,6 Ma) 3 - Limagne (15 à 2 Ma) Montpellier 4 - Mont Dore (2,5 à 0,2 Ma) 11 - Velay 14 à 1 Ma) 12 - Vivarais (35 000 à 10 000 ans) 5 - Cézallier (8 à 3 Ma) 6 - Cantal (11 à 3 Ma) 13 - Coirons (8 à 5,5 Ma) Marseille / 7 - Aubrac (9 à 6 Ma) 14 - Escandorgue-100 km Languedoc (3,5 à 0,8 Ma) [22] Nehlig et al., 2010

D'après Nehlig P. Et Traineau H. (1998)

- Ponces
- Éruptions volcaniques explosives
- Friables et de teinte claire
- Grande viscosité du magma : texture fortement vésiculée et richesse en verre volcanique amorphe
- Projections acides : 60 70 % de SiO₂ (trachyte rhyolite dacite)
- Pouzzolanes
- Pyroclastites scoriacées, essentiellement stromboliennes
- De couleur noire ou rouge selon le degré d'oxydation du fer
- Projections basiques (45 52 % de SiO₂) voire ultra-basiques (< 45%)
- Faible proportion en verre volcanique amorphe (par rapport aux ponces)

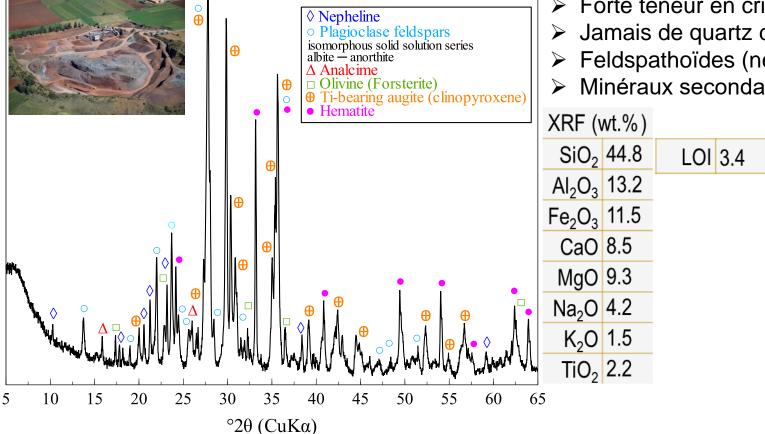
Par altération du verre : Zéolites (tufs) et/ou minéraux argileux



Cœur de cône

Bas de cône

☐ Focus sur les pyroclastites basaltiques du Devès


- 150 cônes de scories alignés (armés ou non par des basaltes compacts)
- Activité strombolienne et dans une moindre mesure phréato-magmatique (maars, anneaux de tufs surtseyens)
- Dynamisme faiblement explosif (cône de projections avec cratère sommital)
- Basaltes alcalins fluides sous-saturés en silice, expulsés en surface sous forme de coulées ou de projections (dégagements gazeux et épanchement de lave)
 - → Coulées de lave associées à des formations pyroclastiques :
 - plus ou moins soudées (pyroclastes peu consolidés, tuf)
 - Tufs hyaloclastiques à palagonite ou brèches
 - → Matériaux meubles vulnérables à l'altération météorique

[24] Audubert et al., 2010

Pyroclastites basaltiques faiblement consolidées (Devès) :

- Forte teneur en cristallites (pouzzolanes = verre + cristaux)
- Jamais de quartz dans les basaltes alcalins (olivine, pyroxène)
- Feldspathoïdes (néphéline)
- Minéraux secondaires d'origine hydrothermale (analcime)

1778

[25] B. Faujas de St Fond Recherches sur les volcans éteints du Vivarais et du Velay, E.O., 1778

1950 - 1970

Exploitation anarchiste peu réglementée

Création du PNR (Parc Naturel Régional des Volcans d'Auvergne)

1977

- Utilisation plus noble
- Valorisation à forte valeur ajoutée
- Structurer des filières stratégiques associées à une extraction respectueuse du patrimoine géologique

https://www.ina.fr/ina-eclaire-actu/video/caf93027251/les-volcans-d-auvergne 19.03.1972

□ La pouzzolanicité

Selon l'approche d'Hervé Pichon [26] :

Ensemble des phénomènes chimiques liés aux interactions entre les pouzzolanes et la chaux en solution et des phénomènes mécaniques induits

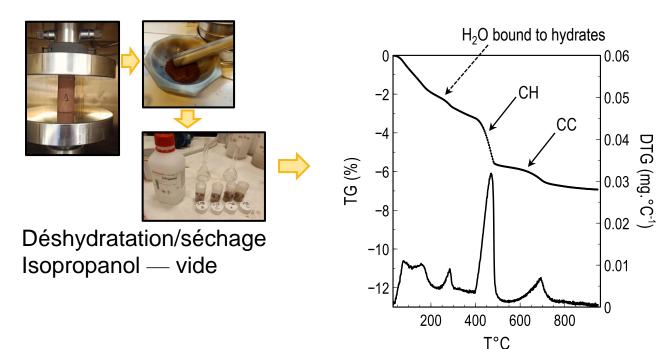
$$\mathbf{PZ} = \mathbf{f} (E_p, E_c, E_m)$$

E_p : capacité du matériau à combiner la chaux du milieu (espérance chimique)

E_c: nature des phases minérales solides néoformées et microstructure associée (expression chimique)

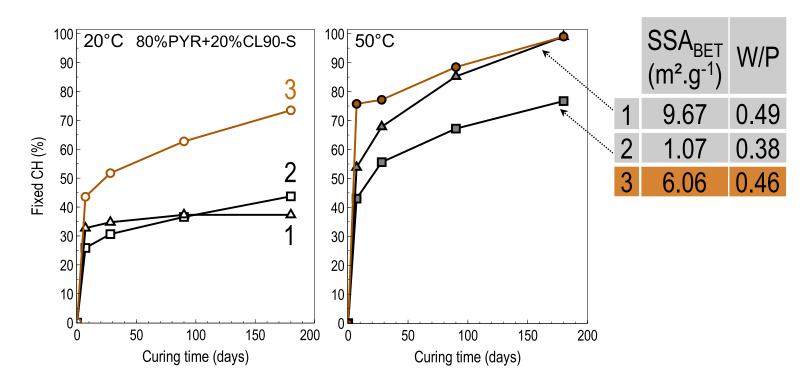
E_m : expression mécanique (durcissement et résistance mécanique induite)

Facteurs d'influence :


- Finesse de la pouzzolane broyée (taille et surface spécifique)
- Nature lithologique (composition chimique et minéralogique)
- Teneur en chaux (et type)
- %HR de conservation et température de cure (forte énergie d'activation)
- Proportion d'eau résiduelle non consommée par les réactions

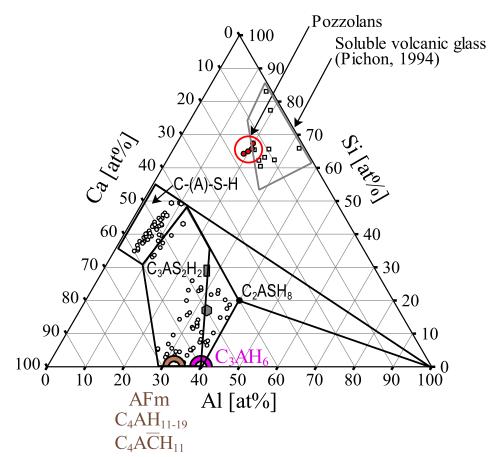
☐ Chaux combinée

 $\text{Réaction pouzzolanique : xCa(OH)}_2 + \frac{\text{yAl}_2\text{O}_3 \cdot \text{zSiO}_2}{\text{yAl}_2\text{O}_3 \cdot \text{zSiO}_2} + (\text{n-x})\text{H}_2\text{O} \rightarrow (\text{CaO})_X \cdot (\text{SiO}_2)_Z \cdot (\text{Al}_2\text{O}_3)_Y \cdot (\text{H}_2\text{O})_{\text{n-x}} \cdot (\text{C-A-S-H})_X \cdot (\text{SiO}_2)_Z \cdot (\text{Al}_2\text{O}_3)_Y \cdot (\text{H}_2\text{O}_3)_Y \cdot (\text{H}_2\text{O}_$


Free Ca(OH)₂ (%) =
$$\frac{\text{%Ca(OH)}_{2, measured}}{1 - (H_2O_{bound})}$$

Combined Ca(OH)₂(%)=
$$= \frac{\text{CH}_{i}(\%) - \text{Free Ca(OH)}_{2}(\%) - \text{carbonated CH(\%)}}{\text{CH}_{i}(\%)} \times 100$$

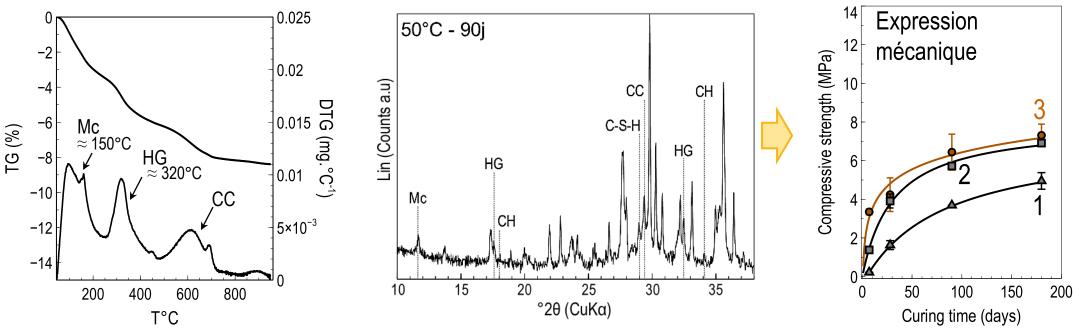
Cinétique de consommation de la chaux :


Mineral Component	Lime Reaction (mg CaO/g)
Rhenish trass	
Quartz	43
Feldspar	117
Leucite	90
Analcime	190
Kaolin	34
Glass phase	364
Total	· ;;
Bavarian trass (glass	272
phase only)	
Obsidian glass	176

[27] Ludwig & Schwiete, 1962

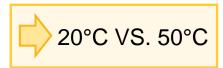
□ Phases minérales néoformées

Expression chimique (CaO–SiO₂–Al₂O₃–H₂O) :


Phases AFm :

 C_4AH_{11-19} (C_4AH_{13} : OH–AFm peu stable) En présence de CO_2 ou de carbonates $\Longrightarrow CO_3$ –AFm Hemicarboaluminate ($C_4A\overline{C}_{0.5}H_{12}$) ou monocarboaluminate ($C_4A\overline{C}_{11}$)

- Cas de la strätlingite (C₂ASH₈): stable à faible Ca/Si (systèmes MK-CH)
- → environnement saturé en humidité pour précipiter et se maintenir
- Série de solutions solides des hydrogénats : $C_3AS_xH_{6-2x}$ katoïte hibschite (C_3AH_6 $C_3AS_2H_2$)
- → se forme à des âges avancés ou à température de cure élevée
- C–S–H plus ou moins enrichis en Al de substitution (Al $^{3+} \leftrightarrow$ Si $^{4+}$)


- Pyroclastites basiques hyposiliceuses : rôle important de l'alumine
- Réaction rapide de l'alumine avec la chaux ⇒ AFm HG ⇒ raidissement au jeune âge par remplissage et intercroissance
- Formation des C–(A)–S–H lente et progressive
- Les propriétés liantes peuvent rester faibles malgré de grandes quantités de chaux fixée (espérance chimique)

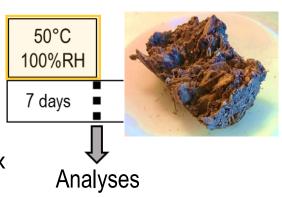
L'expression mécanique dépend du type de produits néoformés en liaison avec leur texture

PZ = f [chaux combinée \rightarrow produits néoformés \rightarrow contribution intrinsèque (matrice cohésive) + densification de la porosité \rightarrow durcissement]

Dans un système CaO-SiO₂-Al₂O₃-SO₄-H₂O:

- Ettringite (C₆A\overline{S}₃H₃₂) formée les 1^{ères} heures
- SO_4 —Afm \rightarrow monosulfoaluminate (Ms) : $C_4A\overline{S}H_{12}$ Selon SO_4^2 -/Al $_2O_3$ et température $T^{\circ}C > 45^{\circ}C \Rightarrow$ Stabilité de Ms au détriment de l'ettringite ([28] Damidot & Glasser, 1992)
- → L'ajout de Na₂SO₄ est connu pour accélérer le durcissement des systèmes pouzzolane—chaux—eau

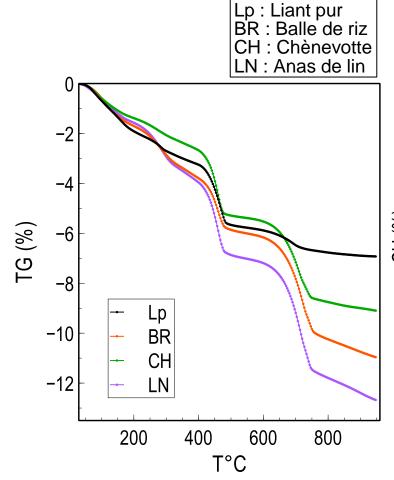
Enjeu granulats bio-sourcés : les conditions de cure

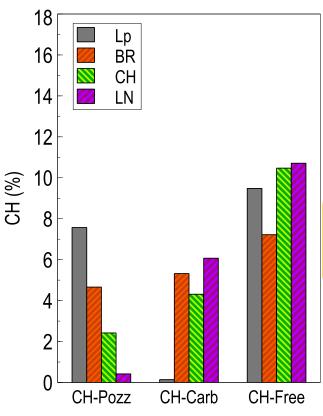

- T°C élevée au jeune âge (relargage de polysaccharides)
- Séchage → carbonatation de la chaux libre voire de certains produits néoformés (C–S–H, AFm, AFt)

Expérience:

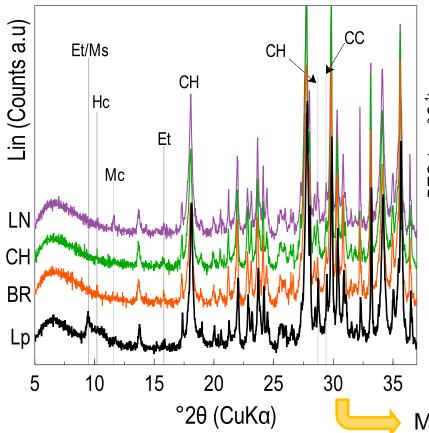
- 80 % PYR non broyée (0–2mm)
- 20 % CL90-S
- Addition de Na₂SO₄

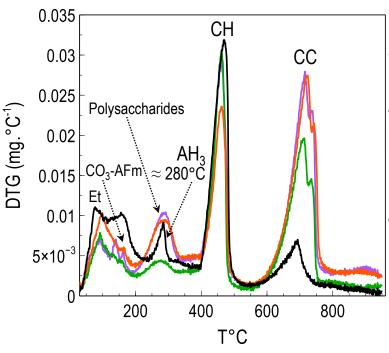
E/L: 0.25 — 0.36


Liant pur et avec granulats végétaux



Granulats biosourcés et pouzzolanicité




- Calculs nécessaires pour une analyse plus fiable
- $ightharpoonup \Delta m_{220^{\circ}C-320^{\circ}C}$: polysaccharides (prélèvement ightharpoonup aléatoire)
- Analyses réalisées à la suite de la cure humide favorisant la pouzzolanicité (pas d'air ambiant)
- LIANT + GRANULATS VÉGÉTAUX
 - Carbonatation conséquente
- Moins de chaux combinée avec végétaux
- → Influence possible du monocarboaluminate

Granulats biosourcés et pouzzolanicité

- Liant pur :
- Présence possible de gibbsite Al(OH)₃
 Al³⁺ libérés par la pouzzolane
- → Formation préférentielle d'ettringite laissant moins de Ca²⁺ disponible (local)
- Pas de propriété liante

$$|\{AH_3 - Et/Ms - CH\}|$$

Modification de l'assemblage d'hydrates avec les granulats végétaux (ici autour de $2\theta = 10^{\circ}$)

$${CO_3-AFm - CH - CC}$$
 (traces Et)

Matériau volcanique naturellement hétérogène Pour $2\theta \approx 30^\circ$: Augite titanifère + CC

Merci pour votre attention